1. 主页 > 知识大全 >

一年级上册数学教案优秀6篇(一年级上数学教案全册)

作为一名优秀的教育工作者,常常要写一份优秀的教学设计,教学设计是一个系统化规划教学系统的过程。那么大家知道规范的教学设计是怎么写的吗?为了让您对于一年级上册数学的写作了解的更为全面,下面快回答给大家分享了6篇一年级上册数学教案,希望可以给予您一定的参考与启发。

一年级上册数学教案 篇一

一、教学内容

义务教育课程标准实验教科书(北京师范大学出版社)《数学》五年级下册第六单元第82-83页《包装的学问》。

二、教材分析

包装问题在日常生活中经常遇到,教材创设了“包装糖果”的情景,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它体现了数学的优化思想。同时有助于学生提高解决实际问题的能力,感受数学与实际生活的密切联系。

三、学情分析

1、学生已有的知识基础。

在本课学习之前,学生已熟练掌握了长方体的特征,能准确、迅速的计算出长方体的表面积;初步认识了由两个相同的正方体拼成一个长方体后表面积发生的变化。

2、学生已有的生活经验。

学生大都接触过物品的包装,清楚地意识到用包装纸包装物品就是求物体的表面积,但实际所需的包装纸又比物体的表面积大,因而教师要和学生理清本课研究的是“接口处不计”的包装方式,这样的活动才能和生活进行有效沟通。

3、学生学习本课内容可能遇到的困难及学习方式的研究。

学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方法的多样化与策略的`最优化可能存在问题,因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同探讨。

四、教法学法

让学生通过小组活动,在合作探究中探索出不同的包装方法,再引导学生观察、比较、交流、总结,领会最节约包装纸的包装策略。使学生积累数学活动经验,感悟优化的数学思想。

五、教学目标

知识与技能目标:利用表面积等有关知识,探索多个相同长方体叠放后使其表面积最小的最优策略。

过程与方法目标:

1、体验解决问题的基本过程和方法,提高解决问题的能力。

2、通过解决包装问题,体验策略的多样化,发展优化思想。情感态度与价值观目标:渗透节约的意识,体会包装的学问在生活中的应用,感悟数学与生活的联系。

六、教学重点难点

重点是:利用表面积等有关知识,探究多个相同长方体最节省包装纸的叠放方法。

难点是:理解最节省包装纸的包装策略。

教具准备:多媒体课件,师生共同准备若干个长方体纸盒。

七、教学过程

(一)课前交流

师:请同学们看一看今天的课堂有什么不同?(有很多听课的老师)

师:这么多的老师来听课,来一睹同学们的风采,你想对自己说些什么?让我们一起说“加油!我是最棒的!”。(生齐说)

师:为了今天这节课,老师也把自己包装了一下。做了发型,还买了件新衣服呢。你们想对李老师说些什么?

师:谢谢同学们,我们可以开始上课了吗?(生:可以)上课!

通过课前交流,既可以消除师生初次见面的陌生、恐惧感,拉近彼此之间的距离;又能增强学生的自信,为课堂营造良好的气氛,它是“点燃快乐课堂的火种”。

(二)激发兴趣,导入课题。

上课之前先请同学们欣赏几幅关于包装的图片(课件出示图片)。师:你们看了这几幅图片后有什么感受,请说一说。

物品经过包装,显得更精美,可包装的目的不仅如此,在包装中还有许多其它的学问,今天我们就来学习《包装的学问》。(板书课题)

再过几天就是李老师的4岁小侄子的生日,我买了盒蛋卷,(课件出示一盒长方体形状的蛋卷盒(10cm×8cm×5cm))老师也打算把这盒蛋卷包装后送给他,(课件演示用包装纸包装蛋卷盒)在包装时我遇到了个问题,请看。(课件出示问题:如果接头处不计,最少需要多大面积的包装纸呢?)

师:谁能帮老师想一想怎样解决这个问题?(生:就是计算它的表面积。)怎么计算你可以说说吗?(生回答)

师:下面我们就一起动手计算一下这个长方体蛋卷盒的表面积好吗?(生完成后交流反馈,课件展示老师的计算。)

设计意图:既复习了旧知识,又为下面组合长方体表面积计算打

下了知识基础和情感基础。

(三)动手操作,初步感知。

1、小组活动,自主探究。

师:老师的爱人也买了一盒同样的蛋卷,包装时一共需要多大面积的包装纸呢?(一个需要340cm,两个就是需要680cm。)

师:有没有不同的意见?说一说。(可以合起来包装,就不是680cm了。)

问:合起来包装为什么就不需要680cm包装纸呢?(有的面重合起来了。)

师:重合的面在包装时需要用包装纸包装吗?(不需要)

师:可以怎样包装呢?请同学们同桌合作,拿出两个长方体纸盒摆一摆。(学生同桌合作,探索组合包装的方法。)

请一名学生展示摆放的方法。(教师在黑板上用实物展示。)

问:还有没有其他的包装方法?再指名展示,老师在黑板上用实物展示。(展示结束,课件出示三种组合包装的方法图。)

2、展开猜想,交流讨论。

师:大家观察一下,这三种包装方法有什么不同?(重合的面不同。)师:同学们观察得很仔细。请看第一种方法重合的是哪些面?(生:两个最大的面。)

师:我们可以说“重合了两个大面”。第二种方法和第三种方法呢?(生:第二种方法重合的是两个中面,第三种方法重合的是两个小面。)

师:请同学们猜想一下,这三种方法中哪种方法最节约包装纸?(生:第一种)

问:第一种方法最节约,你能说一说你是怎样猜想的吗?(指名交流。)

3、验证猜想,得出结论。

师:这个猜想是不是正确呢?我们可以通过什么方式来验证呢?(可以分别计算出三种组合后的长方体的表面积,再比较一下就知道了。)

问:怎样计算大长方体的表面积?(预设学生回答:可以根据组合后的大长方体的长宽高直接计算出表面积;也可以把两个小长方体的表面积之和减去重合面的面积。)

先让学生计算出第一种方法包装后的大长方体表面积。(指名板书)师:有不同的计算方法吗?(再指名板书)

师:我们来比较一下哪种方法简单一些?(指名回答)(把两个小长方体的表面积之和减去重合面的面积。)

师:请同学们用自己喜欢的方法计算另两种的表面积。(指名板书)师:从计算的结果看,是不是和我们刚才的猜想一致呢?(一致)师:谁能说一说在包装时究竟怎样包装才能节约包装纸吗?(指名回答)

设计意图:二个长方体的包装方案是本课教学的重点,也是三个、四个或者多个长方体拼摆的基础,放手让学生进行尝试寻找最节约方式,并说出自己选择的理由,再组织交流,达到一种资源的共享。

四、组合三个,再次体验。

师:李老师的孩子也想买一盒送给他的小弟弟,你能帮李老师想一想三盒蛋卷可以怎样包装吗?请同学们在小组内动手摆一摆。(学生小

人教版2021最新小学数学一年级上册全册教案 篇二

三维目标

一、知识与技能

1.能灵活列反比例函数表达式解决一些实际问题。

2.能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题。

二、过程与方法

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2. 体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观

1.积极参与交流,并积极发表意见。

2.体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点

掌握从物理问题中建构反比例函数模型。

教学难点

从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

多媒体课件。

教学过程

一、创设问题情境,引入新课

活动1

问 属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。下面的例子就是其中之一。

在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

(1)求I与R之间的函数关系式;

(2)当电流I=0.5时,求电阻R的值。

设计意图:

运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力。

师生行为:

可由学生独立思考,领会反比例函数在物理学中的综合应用。

教师应给“学困生”一点物理学知识的引导。

师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值。

生:(1)解:设I=kR ∵R=5,I=2,于是

2=k5 ,所以k=10,∴I=10R .

(2) 当I=0.5时,R=10I=100.5 =20(欧姆).

师:很好!“给我一个支点,我可以把地球撬动。”这是哪一位科学家的名言?这里蕴涵着什么 样的原理呢?

生:这是古希腊科学家阿基米德的名言。

师:是的。公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”: 若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;

阻力×阻力臂=动力×动力臂(如下图)

下面我们就来看一例子。

二、讲授新课

活动2

小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0.5米。

(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?

(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?

设计意图:

物理学中的很多量之间的变化是反比例函数关系。因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用。

师生行为:

先由学生根据“杠杆定律”解决上述问题。

教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系。

教师在此活动中应重点关注:

①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;

②学生能否面对困难,认真思考,寻找解题的途径;

③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣。

师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题。

生:解:(1)根据“杠杆定律” 有

Fl=1200×0.5.得F =600l

当l=1.5时,F=6001.5 =400.

因此,撬动石头至少需要400牛顿的力。

(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有

Fl=600,

l=600F .

当F=400×12 =200时,

l=600200 =3.

3-1.5=1.5(米)

因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米。

生:也可用不等式来解,如下:

Fl=600,F=600l .

而F≤400×12 =200时。

600l ≤200

l≥3.

所以l-1.5≥3-1.5=1.5.

即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米。

生:还可由函数图象,利用反比例函数的性质求出。

师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:

用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?

生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)

根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力。

师:其实反比例函数在实际运用中非常广泛。例如在解决经济预算问题中的应用。

活动3

问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例。又当x=0.65元时,y=0.8.(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?

设计意图:

在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题。

师生行为:

由学生先独立思考,然后小组内讨论完成。

教师应给予“学困生”以一定的帮助。

生:解:(1)∵y与x -0.4成反比例,

∴设y=kx-0.4 (k≠0).

把x=0.65,y=0.8代入y=kx-0.4 ,得

k0.65-0.4 =0.8.

解得k=0.2,

∴y=0.2x-0.4=15x-2

∴y与x之间的函数关系为y=15x-2

(2)根据题意,本年度电力部门的纯收入为

(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)

答:本年度的纯收人为0.6亿元,

师生共析:

(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;

(2)纯收入=总收入-总成本。

三、巩固提高

活动4

一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值。

设计意图:

进一步体现物理和反比例函数的关系。

师生行为

由学生独立完成,教师讲评。

师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系。

生:V和ρ的反比例函数关系为:V=990ρ .

生:当ρ=1.1kg/m3根据V=990ρ ,得

V=990ρ =9901.1 =900(m3).

所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3.

四、课时小结

活动5

你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解 析式,再根据解析式解得。

设计意图:

这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性。

师生行为:

学生可分小组活动,在小组内交流收获, 然后由小组代表在全班交流。

教师组织学生小结。

反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础。用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系。

板书设计

17.2 实际问题与反比例函数(三)

1.

2.用反比例函数的知识解释:在我们使 用撬棍时,为什么动 力臂越长越省力?

设阻力为F1,阻力臂长为l1,所以F1×l1=k(k为常数且k>0).动力和动力臂分别为F,l.则根据杠杆定理,

Fl=k 即F=kl (k>0且k为常数).

由此可知F是l的反比例函数,并且当k>0时,F随l的增大而减小。

活动与探究

学校准备在校园内修建一个矩形的绿化带,矩形的面积为定值,它的一边y与另一边x之间的函数关系式如下图所示。

(1)绿化带面积是多少?你能写出这一函数表达式吗?

(2)完成下表,并回答问题:如果该绿化带的长不得超过40m,那么它的宽应控制在什么范围内?

x(m) 10 20 30 40

y(m)

过程:点A(40,10)在反比例函数图象上说明点A的横纵坐标满足反比例函数表达式,代入可求得反比例函数k的值。

结果:(1)绿化带面积为10×40=400(m2)

设该反比例函数的表达式为y=kx ,

∵图象经过点A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

∴函数表达式为y=400x .

(2)把x=10,20,30,40代入表达式中,求得y分别为40,20,403 ,10.从图中可以看出。若长不超过40m,则它的宽应大于等于10m。

人教版2021最新小学数学一年级上册全册教案 篇三

教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。

教学过程:

一、引入

教师:前面我们学习了正比例和反比例的意义。上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?

二、课堂练习

1.分析、研究第3题。

让学生先说出长方形的长、宽、面积三个量中。其中一个量与另外两个量的关系,教师板书出来:长宽=面积

= 长 =宽

提问:

当面积一定时,长和宽成什么比例关系?

当长一定时,面积和宽成什么比例关系?

当宽一定时,面积和长成什么比例关系?

教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,。

2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:

每次运货吨数运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。

运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系

3.第5题,让学生独立做,教师巡视,注意个别辅导。

4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。

5.第7题,学生独立解答后,选一题说说是怎样解的。

6.学有余力的学生做第8题。

人教版一年级数学上册全册教案2021 篇四

教学内容

苏教版《义务教育课程规范实验教科书数学》四年级(下册)第50~51页。

教学目标

1. 使同学经历对两种事物进行搭配的过程,初步发现简单搭配现象中的规律,并能运用发现的规律解决简单的实际问题。

2. 使同学在观察、操作、笼统、概括、合作和交流等活动中,发展有序考虑的能力,培养初步的符号感。

3. 使同学在活动中增强探索数学规律的兴趣,积累积极的数学学习情感。

教学准备

课件,上衣和裙子图片,记录纸,作业纸。

教学过程

一、 创设情境,初步感知搭配现象

谈话:无锡有许多旅游景点(多媒体显示无锡的风景图片),小红和爸爸妈妈想来无锡玩。为了这次旅游,妈妈给她准备了2件上衣(出示学具):一件绿色的和一件黄色的。还准备了3条裙子(出示学具):粉红色的、蓝色的和大红色的。用什么颜色的上衣配什么颜色的裙子呢?请同学们给她提些建议吧。

同学交流,教师操作。

小结:像这样,一件上衣配一条裙子,就是把上衣和裙子进行搭配。(板书:搭配)

二、 合作探究,体会有序考虑

1. 合作探究。

同桌合作,把所有的搭配情况都找出来,让小红自身挑。

合作要求:同桌两人,一人拿学具进行搭配,另外一人把搭配的情况记录在表格中。

同学活动,教师巡视,关注同学中出现的不同的搭配方法。

请同学汇报搭配过程,教师演示。

小结:一共有6种不同的搭配方法。

2. 比较方法。

提问:通过刚才的观察,你更喜欢哪一组同学搭配的方法?为什么?

同学交流,体会有序搭配是比较好的方法。

小结:有序地搭配可以做到既不重复也不遗漏。(板书:有序,不重复,不遗漏)

3. 理解不同的搭配方法。

谈话:你们能像刚才这组同学一样,把上衣和裙子进行有序地搭配吗?请同桌两个同学再次合作,按自身的想法进行有序地搭配。

同学活动,教师巡视。

反馈:谁能具体地说一说,你们组是怎样有序搭配的?

同学一般会出现两种情况:(1) 选上衣,先用绿色上衣分别和3条裙子配,再用黄色上衣分别和3条裙子配。(2) 选裙子,先用粉红色的裙子和2件上衣配,再用蓝色的裙子和2件上衣配,最后用大红色的裙子和2件上衣配。

4. 小结。

谈话:(电脑演示)把2件上衣和3条裙子进行搭配,可以先用上衣进行有序搭配,也可以先用裙子进行有序搭配。

三、 创新表示,感受符号思想

出示问题:小红的爸爸为了这次旅游,准备了3件衬衫和3条领带,(课件出示3件衬衫和3条领带图)衬衫和领带有多少种不同的搭配方法呢?

1. 讨论。

启发:刚才我们用学具摆出了上衣和裙子有6种不同的搭配方法。现在你还有什么好方法可以把领带与衬衫的搭配方法全都表示出来呢?同桌讨论讨论。

全班交流,教师提示可用连线的方法。

2. 尝试。

谈话:请同学们用自身喜欢的方法在作业纸上有序地表示出这些搭配的方法吧。

展示同学作业,简要研讨。

小结:同学们想到的方法真多,有画实物的,有画简单图形的,还有用字母或数字表示的。

3. 比较。

这么多的表示方法,你更喜欢哪一种呢?为什么?

小结:看来,用简单的图形、字母或数字等符号表示实物的方法更简洁些。

4. 归纳。

电脑演示:电脑小博士就是用简单图形表示的,他用梯形表示领带,用长方形表示衬衫。把3条领带和3件衬衫进行搭配,可以先用领带进行有序搭配(电脑连线),也可以先用衬衫进行有序搭配(电脑连线)。

提问:假如领带的条数不变,衬衫减少一件,可以有多少种不同的搭配方法?

根据同学回答,板书:3×2=6。

再问:假如衬衫的件数不变,领带增加一条,可以有多少种不同的搭配方法?

根据同学回答,板书:4×3=12。

引导:通过刚才的活动,你有什么发现?衬衫的件数和领带的条数,与有多少种搭配方法是什么关系?

同学在小组里交流。

小结:领带条数与衬衫件数的乘积就是搭配的方法数,这就是搭配的规律(板书课题:搭配的规律)。

四、 运用规律,解决实际问题

1. 路线问题。

电脑演示:穿上漂亮的衣服,小红和爸爸妈妈高高兴兴地来到了无锡。打开地图,他们准备从火车站动身,经过五爱广场,到锡惠公园去玩。

提问:那从火车站到锡惠公园一共有多少种不同的走法呢?

同学交流。

再问:这么多的走法?选哪一种比较合适?

同学交流。

小结:当搭配的结果很多时,要注意选择最合适的搭配方案。

2. 奖品问题。

谈话:锡惠公园里有许多有奖游戏,小红的运气真不错,她得奖了。来到领奖处,让我们听听领奖处的叔叔跟她说了什么。

(电脑播放录音)“小朋友,恭喜你得奖。你可以选一个木偶,配上一顶帽子,或者配上一条围巾作为奖品。领奖之前我可要先考考你喔。现在有3只木偶,2顶帽子和3条围巾,一共有多少种不同的搭配的方法呢?”

同学交流不同的搭配方法。

3. 游戏问题。

同学们在做“石头、剪刀、布”的游戏时,有没有注意其中也有我们研究的搭配规律呢?你知道在这个游戏中,一共有多少种不同的搭配方法吗?怎样才干把各种不同的搭配方法有序地玩出来呢?

同桌商量,试着玩一玩。

交流玩法:一个同学连续出三次“石头”,另一个同学依次出“石头”“剪刀”和“布”,就这样玩下去。

同桌两人玩一玩,然后交换一下角色,再玩一玩。

同学活动后,说一说一共有几种不同的搭配方法。

小结:原来游戏中也有数学问题呢,只要我们留心观察,就会发现生活中处处有数学。

五、 全课小结,引导延伸

人教版2021最新小学数学一年级上册全册教案 篇五

从容说课

我们学习知识的目的就是为了应用,如能把书本上学到的知识运用到实际生活中,这就说明确实把知识学好了,会用了

用函数观点处理实际问题的关键在于分析实际情境、建立函数模型,并进一步提出明确的数学问题,教学时应注意分析的过程,即将实际问题置于已有知识背景之中,用数学知识重新解释这是什么?可以看成什么?让学生逐步学会用数学的眼光考查实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想

此外,解决实际问题时。还要引导学生体会知识之间的联系以及知识的综合运用

教学目标

(一)教学知识点

1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程

2.体会数学与现实生活的紧密联系,增强应用意识。提高运用代数方法解决问题的能力

(二)能力训练要求

通过对反比例函数的应用,培养学生解决问题的能力

(三)情感与价值观要求

经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题。理解问题,并能综合运用所学的知识和技能解决问题。发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用

教学重点

用反比例函数的知识解决实际问题

教学难点

如何从实际问题中抽象出数学问题、建立数学模型,用数学知识去解决实际问题

教学方法

教师引导学生探索法

教学过程

Ⅰ.创设问题情境,引入新课

[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?

[生]是为了应用

[师]很好;学习的目的是为了用学到的知识解决实际问题。究竟反比例函数能解决一些什么问题呢?本节课我们就来学一学

Ⅱ. 新课讲解

某校科技小组进行野外考察,途中遇到片十几米宽的烂泥湿地。为了安全、迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通道,从而顺利完成了任务;你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时随着木板面积S(m2)的变化,人和木板对地面的压强p(Pa)将如何变化?如果人和木板对湿地地面的压力合计600 N,那么

(1)用含S的代数式表示p,p是S的反比例函数吗?为什么?

(2)当木板画积为 0.2 m2时。压强是多少?

(3)如果要求压强不超过6000 Pa,木板面积至少要多大?

(4)在直角坐标系中,作出相应的函数图象

(5)清利用图象对(2)和(3)作出直观解释,并与同伴进行交流

[师]分析:首先要根据题意分析实际问题中的两个变量,然后看这两个变量之间存在的关系,从而去分析它们之间的关系是否为反比例函数关系,若是则可用反比例函数的有关知识去解决问题

请大家互相交流后回答

[生](1)由p=得p=

p是S的反比例函数,因为给定一个S的值。对应的就有唯一的一个p值和它对应,根据函数定义,则p是S的反比例函数

(2)当S= 0.2 m2时, p==3000(Pa)

当木板面积为 0.2m2时,压强是3000Pa.

(3)当p=6000 Pa时,

S==0.1(m2)

如果要求压强不超过6000 Pa,木板面积至少要 0.1 m2

(4)图象如下:

(5)(2)是已知图象上某点的横坐标为0.2,求该点的纵坐标;(3)是已知图象上点的纵坐标不大于6000,求这些点所处的位置及它们横坐标的取值范围

[师]这位同学回答的很好,下面我要提一个问题,大家知道反比例函数的图象是两支双曲线、它们要么位于第一、三象限,要么位于第二、四象限,从(1)中已知p=>0,所以图象应位于第一、三象限,为什么这位同学只画出了一支曲线,是不是另一支曲线丢掉了呢?还是因为题中只给出了第一象限呢?

[生]第三象限的曲线不存在,因为这是实际问题,S不可能取负数,所以第三象限的曲线不存在

[师]很好,那么在(1)中是不是应该有条件限制呢?

[生]是,应为p= (S>0).

做一做

1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间的函数关系如下图;

(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?

(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器限制电流不得超过 10A,那么用电器的可变电阻应控制在什么范围内?

[师]从图形上来看,I和R之间可能是反比例函数关系。电压U就相当于反比例函数中的k.要写出函数的表达式,实际上就是确定k(U),只需要一个条件即可,而图中已给出了一个点的坐标,所以这个问题就解决了,填表实际上是已知自变量求函数值。

[生]解:(1)由题意设函数表达式为I=

∵A(9,4)在图象上,

∴U=IR=36

∴表达式为I=

蓄电池的电压是36伏

(2)表格中从左到右依次是:12,9,7.2,6,4.5,3.6

电源不超过 10 A,即I最大为 10 A,代入关系式中得R=3.6,为最小电阻,所以用电器的可变电阻应控制在R≥3.6这个范围内

2、如下图,正比例函数y=k1x的图象与反比例函数y=的图象相交于A,B两点,其中点A的坐标为(,2)

(1)分别写出这两个函数的表达式:

(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流

[师]要求这两个函数的表达式,只要把A点的坐标代入即可求出k1,k2,求点B的

坐标即求y=k1x与y=的交点

[生]解:(1)∵A(,2)既在y=k1x图象上,又在y=的图象上

∴k1=2,2=

∴k1=2,k2=6

∴表达式分别为y=2x,y=

∴x2=3

∴x=±

当x= ?时,y= ?2

∴B(?,?2)

Ⅲ.课堂练习

1.某蓄水池的排水管每时排水 8 m3,6 h可将满池水全部排空

(1)蓄水池的容积是多少?

(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?

(3)写出t与Q之间的关系式;

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为多少?

(5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全部排空?

解:(1)8×6=48(m3)

所以蓄水池的容积是 48 m3

(2)因为增加排水管,使每时的排水量达到Q(m3),所以将满池水排空所需的时间t(h)将减少。

(3)t与Q之间的关系式为t=

(4)如果准备在5 h内将满池水排空,那么每时的排水量至少为=9.6(m3)

(5)已知排水管的最大排水量为每时 12m3,那么最少要=4小时可将满池水全部排空。

Ⅳ、课时小结

节课我们学习了反比例函数的应用。具体步骤是:认真分析实际问题中变量之间的关系,建立反比例函数模型,进而用反比例函数的有关知识解决实际问题。

Ⅴ课后作业

习题5.4.

板书设计

§ 5.3反比例函数的应用

一、1.例题讲解

2.做一做

二、课堂练习

三、课时小节

四、课后作业(习题5.4)

一年级上册数学教学计划 篇六

教学目标:

1、使学生知道钟面上有时针、分针、12个数字、12个大格。

2、结合学生的生活经验,学会认识整时。

3、帮助学生初步建立时间观念,培养学生遵守时间、珍惜时间的良好生活学习习惯。

教学重点:

结合生活经验认识整时。

教学准备

主题图、大钟面、小钟面

教学过程

一、创设情境,引入新课

1、谈话引入

2、指导看图

师:小红起床了,妈妈在旁边笑眯眯地看着她,表扬她是一个早睡早起的好孩子。我们也要像小红那样,听到闹钟响了,马上起床,不睡懒觉,养成好习惯。

3、揭题

师:闹钟可以叫我们起床,那你还知道钟表有哪些作用呢?

师:钟表在生活中经常用到,它的本领可大了,今天,我们就一起来认识钟表。

师:板书课题——认识钟表。

二、探究新课

1、认识钟面

(1)看一看,比一比。

A、观察钟面

师:引导学生拿出学具钟面,仔细观察钟面上都有什么?

B、比一比

生汇报(都有两根针和1~12这些数字)

C、认识时针和分针

师:这两根针又有什么特点呢?

生仔细观察。

师小结:对,你们观察得真仔细,一根更长更细的叫分针,另一根更短更胖的叫时针。(结合钟面上的时针分针板书特征:时针短、胖;分针长、细)

师结合学生的回答,让学生认识分针时针。(演示并讲解)

D、指一指,认一认

师指给学生认时针和分针。

同桌互相指认。

E、说一说

师课件出示钟面,生仔细观察(时针分针在走)师问:你发现了什么?

钟面上的针是按怎样的方向转的?(生思考)

师:(小结)像这样的方向叫做顺时针方向。(结合钟面讲解)

生跟着比划,了解顺时针方向。

师小结:分针和时针总是朝着顺时针方向不停地转动。

2、认识整时

A、认识第一个钟面上的时刻(7时)

这是小红早上起床的时刻,你知道是几时吗?你是怎么知道的?

师问:这个钟面上的分针指着几?时针指着几?是几时?

生汇报:分针指着数字12,时针指着数字7。

师小结:当分针指着12,时针指着7就是7时。

B、认识书上第91页主题图下面的三个钟面

师指着第一个8时的钟面,问:你能说出钟面上的时刻吗?你是怎么知道的?

生汇报观察认时间的'结果。(分针指着12,时针指着8,我知道是8时)

师:分针指着12时,时针指着几就是几时。(板书,生齐读)

按上面的教学方法让学生自己先认,师再结合学生的汇报小结认整时的方法。

师小结:我们把刚才我们认的这四个时刻都叫做整时。(板书:整时)

C、拨钟(认整时)

师拨钟生认。同桌互拨互认。师说时间生拨钟。

3、学习时间的两种表示方法

师:刚才我们认出了钟面上的时刻,那你能把这些时刻记录下来吗?

A、介绍用汉字“时”的表示方法。

几时只要在几的后面加写“时”字就可以。(板书:8时)

B、介绍数字表示方法。

出示电子钟8:00。这是什么?这种表示方法有什么特点?你还在什么地方见到过这种表示时间的方法?

学生回答后,师简要小结:用数字表示整时时,冒号右边是2个“0”,左边是几就是几时。

C、学生接着用两种表示方法把后面两个钟面上的时间表示出来,指导学生完成,并针对问题及时讲评。

三、应用

1、指导学生完成课本第92页的内容

时间是很宝贵的,我们要合理利用时间,安排好一天的学习、生活。这是小明一天的时间安排(出示课件)。

师:打开课本第92页,仔细观察图,说说他们什么时间在做什么?你能用两种表示方法表示出每一个钟面上的时间吗?

生独立完成,指名板演,师讲评,生订正。

2、说说自己一天的安排

教育每个学生都要遵守纪律并爱惜时间,做时间的主人。

3、练习十六第三题:让学生试一试

四、总结

1、今天这节课你有什么收获?(根据学生的回答,结合板书小结今天的学习内容)

2、我们要珍惜时间,好好学习,做时间的主人。

夫参署者,集众思,广忠益也。快回答为大家分享的6篇一年级上册数学教案就到这里了,希望在一年级上册数学的写作方面给予您相应的帮助。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。