学习的成功与失败原因是多方面的,要首先从自己身上找原因,找出努力的方向。每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学其实和语文英语一样,也是要记、要背、要练的。旧书不厌百回读,熟读精思子自知,本页是www.kuaihuida.com可爱的小编为家人们整理的五年级数学知识点归纳精选9篇,仅供借鉴。
知识点如何归纳? 篇一
学习哪一章节之前,先看看这一章节的目录,对这一章要学习的内容有个大概了解。然后就是细致的学习各个知识点,要归纳知识点,必须对每个知识点理解透彻。第三步就是学习完成后进行总结,这时就可以看着目录回忆每一个小标题讲解了什么内容,将目录进行丰富,然后对照书本看自己是否有遗漏。最后就是存疑,总有不会的,问老师或者同学,可以列入自己的疑难点中。
当然如果是理科问题,比如数学物理,不完成一定的题量是不能很好的理解并归纳知识点的,所以要做题并思考,思考每一道题考察了哪些知识点,用什么方法解决,这样也是题目做完了,知识点就归纳完了。
五年级上册数学知识点总结 篇二
1、公式:
(1)长方形:
周长=(长+宽)x2字母公式:C=(a+b)x2
长=周长÷2—宽字母公式:a=C÷2—b
宽=周长÷2—长字母公式:b=C÷2—a
面积=长x宽字母公式:S=ab
(2)正方形:
周长=边长x4字母公式:C=4a
面积=边长x边长字母公式:S=a2
(3)平行四边形:
面积=底x高字母公式:S=ah
底=面积÷高字母公式:a=S÷h
高=面积÷底字母公式:h=S÷a
(4)三角形:
面积=底x高÷2字母公式:S=ah÷2
底=面积x2÷高字母公式:a=Sx2÷h
高=面积x2÷底字母公式:h=Sx2÷a
(5)梯形:
面积=(上底+下底)x高÷2字母公式:S=(a+b)h÷2
高=面积x2÷(上底+下底)字母公式:h=2S÷(a+b)
上底+下底=面积x2÷高字母公式:a+b=2S÷h
上底=面积x2÷高—下底字母公式:a=2S÷h—b
下底=面积x2÷高—上底字母公式:b=2S÷h—a
2、平行四边形面积公式推导:
平行四边形可以转化成一个长方形;长方形的长相当于平行四边形的底;长方形的宽相当于平行四边形的高;长方形的面积等于平行四边形的面积。
因为长方形面积=长x宽,所以平行四边形面积=底x高。
3、三角形面积公式推导:
两个完全一样的三角形可以拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高;平行四边形的面积等于三角形面积的2倍。
因为平行四边形面积=底x高,所以三角形面积=底x高÷2
4、梯形面积公式推导:
两个完全一样的梯形可以拼成一个平行四边形,平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的。2倍。
因为平行四边形面积=底x高,所以梯形面积=(上底+下底)x高÷2
5、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍。
6、长方形框架拉成平行四边形,周长不变,高和面积变小。
7、组合图形:转化成已学的简单图形,通过加、减进行计算。
小学数学等式的性质
性质1:等式两边同时加上(或减去)同一个整式,等式仍然成立。
若a=b,那么a+c=b+c
性质2:等式两边同时乘或除以同一个不为0的整式,等式仍然成立。
若a=b,那么有a·c=b·c或a÷c=b÷c(c≠0)
性质3:等式具有传递性。
若a1=a2,a2=a3,a3=a4那么a1=a2=a3=a4
小学数学量的计算单位及进率归类
1、长度计量单位及进率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里1千米=1000米
1米=10分米1分米=10厘米
1厘米=10毫米
2、面积计量单位及进率:
平方千米、公顷、平方米、平方分米、平方厘米
1平方千米=100公顷
1平方千米=1000000平方米
1公顷=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
3、体积容积计量单位及进率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升1立方厘米=1毫升
4、质量单位及进率:
吨、千克、公斤、克
1吨=1000千克
1千克=1公斤
1千克=1000克
5、时间单位及进率:
世纪、年、月、日、小时、分、秒
1世纪=100年1年=12月
1天=24小时1小时=60分
1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天)
人教版五年级数学上册知识点 篇三
第一单元《小数乘法》知识点
一、小数乘整数 (利用因数的变化引起积的变化规律来计算小数乘法)
知识点一:
1、计算小数加法先把小数点对齐,再把相同数位上的数相加
2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:
积中小数末尾有0的乘法。 先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。如:3.60 “0” 应划去
知识点三:
如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。如0.02×2=0.04
知识点四:
计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思考:
小数乘整数与整数乘整数有什么不同?
1、小数乘整数中有一个因数是小数,所以积一般来说也是小数。
2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘小数
知识点一:
因数与积的小数位数的关系:因数中共有几位小数,积中就有几位小数。
知识点二:
小数乘法的一般计算方法:
先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:
小数乘法的验算方法
1、把因数的位置交换相乘
2、用计算器来验算
三、积的近似数
知识点一:
先算出积,然后看要保留数位的下一位,再按四舍五入法求出结果,用约等号表示。
知识点二:
如果求得的近似数所求数位的数字是9而后一位数字又大于5需要进1,这是就要依次进一用0占位。如6.597 保留两位为6.60
四、连乘、乘加、乘减
知识点一:
小数乘法要按照从左到右的顺序计算
知识点二:
小数的乘加运算与整数的乘加运算顺序相同。先乘法,后加法
整数乘法的交换律、结合律和分配律,对于小数乘法也适用。
五、简便运算
整数乘法的交换律、结合律和分配律,对于小数乘法也适用
计算连乘法时可应用乘法交换律、结合律将几位整数的两个数先乘,再乘另一个数,计算一步乘法时,可将接近整十、整百的数拆成整十整百的数和一位数相加减的算式,再应用乘法分配律简算。
对于不符合运算定律的算式,有些通过变形也可以应用。
乘法分配律也可以推广到相应的减法。
第二单元《小数除法》知识点
1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:2.6÷1.3表示已知两个因数的积2.6与其中的一个因数1.3,求另一个因数的运算。
小数除法的计算方法:
计算除数是整数的小数除法,按整数除法的计算方法去除,商的小数点要和被除数的小数点对齐,整数部分不够除,商0,点上小数点,继续除;如果有余数,要添0再除。
计算除数是小数的除法,先把除数转化成整数,除数的小数点向右移动几位,被除数的小数点也要向右移动几位,位数不够时,在被除数的末尾用0补足,然后按照除数是整数的小数除法进行计算。
2、取近似数的方法:
取近似数的方法有三种,①四舍五入法 ②进一法 ③去尾法
一般情况下,按要求取近似数时用四舍五入法,进一法、去尾法在解决实际问题的时候选择应用。
取商的近似数时,保留到哪一位,一定要除到那一位的下一位,然后用四舍五入的方法取近似数。没有要求时,除不尽的一般保留两位小数。
3、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。依次不断重复出现的数字,叫做这个循环小数的的循环节。
4、循环小数的表示方法:
一种是用省略号表示,要写出两个完整的循环节,后面标上省略号。如:0.3636…… 1.587587……
另一种是简写的方法:即只写出一组循环节,然后在循环节的第一个数字和最后一个数上面点上圆点。如:12.
5、有限小数:小数部分的位数是有限的小数,叫做有限小数。
6、无限小数:小数部分的位数是无限的小数,叫做无限小数。
第三单元《观察物体》知识点
1、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
2、正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。
3、构建空间想象力:
(1)、将两个完全一样的正方体并排放,要求想象画出以不同角度看到的样子(强调左右面是重合,故只能看见一个正方形)。
(2)、将一个正方体和圆柱体并排放,要求想象画出从不同角度看到的样子。
4、动手操作,思维拓展
用5个小正方体摆从正面看到的图形(你能摆出几种不同的方法)。(有多少种不同摆法,最少要用多少个小正方体,最多只能用多少个小正方体。)
第四单元《简易方程》知识点
1、用字母表运算定律。
加法交换律: a+b=b+a 加法结合律: a+b+c=a+(b+c)
乘法交换律: a×b=b×a 乘法结合律:a×b×c=a×(b×c)
乘法分配律: (a±b)×c=a×c±b×c
2、用字母表示计算公式。
长方形的周长公式: c=(a+b)×2 长方形的面积公式: s=ab
正方形的周长公式: c=4a 正方形的面积公式: s=
3、 读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘x。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)×(时间) 速度=(路程)÷(时间) 时间=(路程)÷(速度)
总价=(单价)×(数量) 单价=(总价)÷(数量) 数量=(总价)÷(单价)
总产量=(单产量)×(数量) 单产量=(总产量)÷(数量)
数量=(总产量)÷(单价 )
工作总量=(工作效率)×(工作时间)
工作效率=(工作总量)÷(工作时间)
工作时间=(工作总量)÷(工作效率)
大数-小数=相差数 大数-相差数=小数 小数+相差数=大数
一倍量×倍数=几倍量 几倍量÷倍数=一倍量
几倍量÷一倍量=倍数
被减数=减数+差 减数=被减数-差 加数=和-另一个加数
被除数=除数×商 除数=被除数÷商 因数=积÷另一个因数
第五单元 《多边形面积》知识点
1、长方形面积=长×宽 字母公式:s=ab
长方形周长=(长+宽)×2 字母公式:c=(a+b)×2
2、正方形面积=边长×边长 字母公式:s= 或者s=a×a
正方形周长=边长×4 字母公式:c=4a 或者c= a×4
3、平行四边形面积=底×高 字母公式:s=ah
4、三角形面积=底× 高÷2 字母公式:s=ah÷2
5、梯形面积=(上底+下底)×高÷2 字母公式:s=(a+b)×h÷2
6、计算圆木、钢管等的根数: (顶层根数+底层根数)×层数÷2
7、等底等高的平行四边形面积相等。等底等高的三角形面积相等。
等底等高的三角形和平行四边形面积关系:三角形的面积是平行四边形面积的一半,平行四边形的面积是三角形面积的2倍。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
第六单元《统计与可能性》知识点
1、平均数=总数量÷总份数
2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适
第七单元《数学广角》知识点
1、数不仅可以用来表示数量和顺序,还可以用来编码。
2、邮政编码:由6位组成,前2位表示省(直辖市、自治区),前3位表示邮区,前4位表示县(市),最后2位表示投递局(所)。
3、身份证号码:由18位组成,(1)前1、2位数字表示:所在省份的代码; (2)第3、4位数字表示:所在城市的代码;
(3)第5、6位数字表示:所在区县的代码;
(4)第7~14位数字表示:出生年、月、日;
(5)第15、16位数字表示:所在地的派出所的代码;
(6)第17位数字表示性别:奇数表示男性,偶数表示女性;
(7)第18位数字是校检码: 用来检验身份证的正确性。校检码可以是0~9的数字,有时也用x表示。
数学的学习方法 篇四
01细心发掘概念和公式:很多同学数学没有学好,是因为对概念的理解只是停留在文字表面,一味死记硬背,或者不重视对公式的记忆。建议细心观察特例,深入了解它在题目中的常见考点。
02收集自己的典型错误和不会的题目:有些同学只追求做题的数量,草草地应付作业了事,而不追求解决出现的问题,更谈不上收集错误。做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有所收获。
03总结相似类型题目:当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪类题型不会做时,你才真正掌握了这门学科的窍门。“总结归纳”是将题目越做越少的最好办法。
04就不懂的问题,积极提问、讨论:一个比较难的题目,经过向老师提问,或者与同学讨论,你可能就会从对方那里学到好的方法和技巧。“勤学”是基础,“好问”是关键。
五年级数学知识点 篇五
一、填空:24分
1、3.85立方米=()立方分米4升40毫升=()升
2、用一根长48厘米的铁丝焊成一个正方体框架(接头处不计)表面积是()平方厘米,体积是()立方厘米
3、在括号里填上适当的单位名称:
一块橡皮的体积大约是8()一个教室大约占地48()
一辆小汽车油箱容积是30()小明每步的长度约是60()
4、20以内的自然数中(包括20),奇数有()偶数有()
5、在14、6、15、24中()能整除(),()和()是互质数
6、能同时被2、3、5整除的最大两位数是(),把它分解质因数是()
7、5□中最大填()时这个数能被3整除,这个数的约数有()
8、如果a能被b整除,则a和b的最大公约数是(),a和b的最小公倍数是()
9、已知a=2×2×3×5b=2×5×7,a和b公有的质因数有(),它们的最大公约数是()
10、一根长2米的长方体钢材,沿横截面截成两段后,表面积增加0.6平方分米,这段长方体钢材的体积是()立方分米。
二、判断:5分
1、一个非0自然数不是质数,就是合数。()
2、一个数的倍数一定大于它的约数。()
3、两个质数的积一定是合数。()
4、一个长方体(不含正方体)最多有8条棱相等。()
5、大于2的偶数都是合数。()
三、选择:10分
1、自然数a除以自然数b,商是5,这两个自然数的最小公倍数是()
A.aB.bC.5
2、A=2×2×3B=2×3×5AB的最大公约数是()
A.6B.3C.2
3、正方体的棱长扩大3倍,体积扩大()
A.3倍B.9倍C.27倍
4、15与()是互质数
A.18B.28C.102
四、计算:24分
(1)用短除法求下面各组数的最大公约数(3个数的除外)和最小公倍数
16和2445和6026和39
10、15和4512、14和42
(2)递等式计算:
2.9×1.4+2×0.16200-(3.05+7.1)×18
30.8÷[14-(9.85+1.07)](2.44-1.8)÷0.4×20
五、应用题:37分第2题7分,其余每题6分
1、一段长方体钢材,长1.6米,横截面是边长4厘米的正方形。每立方厘米刚重7.8克,这块方钢重多少?
2、用铁皮做一个无盖的长方体油桶,长和宽都是4分米,高6分米,用铁皮多少平方分米?桶内放汽油,每升油重0.82千克,这个油桶可装汽油多少千克?
3、一块棱长是0.6米的正方体的钢坯,锻成横截面是0.09平方米的长方体钢材,锻成的钢材有多长?(用方程解答)
4、一个长方体玻璃缸,从里面量长40厘米,宽25厘米,缸内水深12厘米。把一块石头浸入水中后,水面升到16厘米,求石块的体积。
5、甲乙两地相距120千米,某人骑自行车,从甲地到乙地,去时用了5小时,回来时加快速度用了4小时,他往返一次平均每小时行多少千米?
6、要制作12节长方体的铁皮烟囱,每节长2米,宽4分米,高3分米,至少要用多少平方米的铁皮?
六、思考题:
把长8厘米,宽12厘米,高5厘米的木块锯成棱长2厘米的正方体木块。可锯多少块?
人教版小学五年级数学知识点 篇六
多边形的面积
1、公式:
长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2
面积=面积=长×宽字母公式:S=ab
正方形:周长=边长×4字母公式:C=4a
平行四边形的面积=底×高字母公式:S=ah
三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2
梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2
【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】
2、平行四边形面积公式推导:剪拼、平移
3、三角形面积公式推导:旋转
平行四边形可以转化成一个长方形;
两个完全一样的三角形可以拼成一个平行四边形,
长方形的长相当于平行四边形的底;
平行四边形的底相当于三角形的底;
长方形的宽相当于平行四边形的高;
平行四边形的高相当于三角形的高;
长方形的面积等于平行四边形的面积,
平行四边形的面积等于三角形面积的2倍,
因为长方形面积=长×宽,所以平行四边形面积=底×高。
因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2
4、梯形面积公式推导:旋转
5、三角形、梯形的第二种推导方法老师已讲,自己看书
两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和;
平行四边形的高相当于梯形的高;
平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
6、等底等高的平行四边形面积相等;
等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。
7、长方形框架拉成平行四边形,周长不变,面积变小。
8、组合图形:转化成已学的简单图形,通过加、减进行计算。
小学五年级数学重要知识点归纳 篇七
1.小数乘整数:意义——求几个相同加数的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2.小数乘小数:意义——就是求这个数的几分之几是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
规律: 一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
3.求近似数的方法一般有三种: ⑴四舍五入法;⑵进一法;⑶去尾法
4.计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。
5.小数四则运算顺序跟整数是一样的。
6.运算定律和性质: 加法: 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法: 减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法: 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=a×c+b×c (a-b)×c=a×c-b×c 除法: 除法性质:a÷b÷c=a÷(b×c)
7.小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
8.小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。
9.除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。
10.在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。五年级数学重要知识点
11.除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。 ③被除数不变,除数缩小,商扩大。
12.循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。 循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32.
13.小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。
14.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。
15.在含有字母的式子里,字母中间的乘号可以记作“”,也可以省略不写。加号、减号除号以及数与数之间的乘号不能省略。
16.a×a可以写作aa或a,读作a的平方。 2a表示a+a
17.方程:含有未知数的等式称为方程。 使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。
18.解方程原理:天平平衡。等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
19.10个数量关系式: 加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数×因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商×除数 除数=被除数÷商
20.所有的方程都是等式,但等式不一定都是等式。
21.公式:长方形:周长=(长+宽)×2 【长=周长÷2-宽; 宽=周长÷2-长】 字母公式:C=(a+b)×2 面积=长×宽 字母公式:S=ab 正方形:周长=边长×4 字母公式:C=4a 面积=边长×边长 字母公式:S=a 平行四边形:面积=底×高 字母公式: S=ah 三角形:面积=底×高÷2 【底=面积×2÷高; 高=面积×2÷底】 字母公式: S=ah÷2 梯形: 面积=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2 【上底=面积×2÷高-下底,下底=面积×2÷高-上底; 高=面积×2÷(上底+下底)】
22.平行四边形面积公式推导:剪拼、平移 平行四边形可以转化成一个长方形; 长方形的长相当于平行四边形的底; 长方形的宽相当于平行四边形的高; 长方形的面积等于平行四边形的面积; 因为长方形面积=长×宽,所以平行四边形面积=底×高。
23.三角形面积公式推导:旋转 两个完全一样的三角形可以拼成一个平行四边形; 平行四边形的底相当于三角形的底; 平行四边形的高相当于三角形的高; 平行四边形的。面积等于三角形面积的2倍; 因为平行四边形面积=底×高,所以三角形面积=底×高÷2
24.梯形面积公式推导:旋转 两个完全一样的梯形可以拼成一个平行四边形; 平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高; 平行四边形面积等于梯形面积的2倍; 因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2
25.等底等高的平行四边形面积相等;等底等高的三角形面积相等; 等底等高的平行四边形面积是三角形面积的2倍。
26.长方形框架拉成平行四边形,周长不变,面积变小。
27.组合图形:转化成已学的简单图形,通过加、减进行计算。
28.平均数=总数量÷总份数
29.中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。
30.数不仅可以用来表示数量和顺序,还可以用来编码。
31.由6位组成: 前2位表示省(直辖市、自治区) 前3位表示邮区 前4位表示县(市) 最后2位表示投递局
32.身份证号码:18位 倒数第二位的数字用来表示性别,单数表示男,双数表示女。
五年级数学知识点 篇八
一、小数乘法。
1、积与因数的关系:
一个数(0除外)乘大于1的数,积比原来的数大。
一个数(0除外)乘小于1的数,积比原来的数小。
2、一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)几倍。
一个因数扩大A倍,另一个因数扩大B倍,积就扩大AB倍
一个因数扩大几倍,另一个因数缩小相同的倍数,积不变。
二、小数除法
3、小数除以整数:
①先按整数除法的方法去除;
②商的小数点要和被除数的小数点对齐;
③整数部分不够除,商0,点上小数点;
④除到最后一位如果还有余数,要添0再除。
4除数是整数的小数除法
5、小数除以小数:
6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
7、小数部分的位数是有限的小数,叫做有限小数。
8、小数部分的位数是无限的小数,叫做无限小数。
9、一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
三、
10、当被除数与除数同时扩大或缩小相同的倍数时,商不变。
当被除数扩大或缩小几倍,除数不变时,商也扩大或缩小相同的倍数。
当被除数不变,除数扩大或缩小几倍时,商缩小或扩大相同的倍数 。
11、当被除数(不为0)除以一个小于它的数时,商大于1。
当被除数(不为0)除以一个大于它的数时,商小于1。
当被除数(不为0)除以一个小于1的数时,商大于被除数。
当被除数(不为0)除以一个大于1的数时,商小于被除数。
12、求商的近似值:
用四舍五入法,
根据具体情况用去尾法取近似值。
用进一法取近似值。
四:倍数与因数
概念:五年级数学期末考试必备知识点
13、自然数a除以自然数b(b0)除得的商正好是整数,而没有余数,我们就说a能被b整除,或者说b能整除a。则a是b的倍数,b是a的因数。
如84=2,可以说8是4和2的倍数,2和4是8的因数。
14、因数和倍数是相互依存的关系,不能单独存在;一个数的因数的个数是有限个的,一个数的倍数有无数个,最大的因数和最小的倍数是它本身。
15、2的倍数特征:个位上是0、2、4、6、8的数都是2的倍数
16、5的倍数特征:个位上是0、5的数都是5的倍数
17、3或9 的的倍数特征:各个数位上的数字之和是3或9的倍数的数
18、11的倍数特征:一个数奇数位数字之和与偶数位数字之和相减(大数减小
小数)其差是11的倍数,那么这个整数就是11的倍数。
19一个较大的整数末三位数字所组成的三位数和末三位以前的数字组成的数之差(用大数减小数)是7、13、11的倍数,则这个数就是它们的倍数。
20:判断这个数是合数还是质数,我们先用2、3、5、9的倍数特征去判断,然后可以用7、11、13等较小的质数去试除
五、混合运算:
21小数的四则运算顺序跟整数是一样的。整数的运算定律,对小数也一样适用。
22乘法交换律:ab=ba
乘法结合律:a(bc)=(ab)c
乘法分配律:a(b+c)=ab +ac
减法的性质:a-b-c = a-(b+c)
除法的性质:abc = a(bc)
ac+bc=(a+b)c
ac-bc=(a-b)c
单位换算
23:大单位到小单位,乘进率。小单位到大单位,除以进率。
六、图形面积计算
24基本知识点:
平行四边形的底:面积高
平行四边形的高:面积底
三角形的底:面积2高
三角形的高:面积2底
梯形的高:面积2(上底+下底)
梯形的上底:面积2高-下底
梯形的下底:面积2高-上底
25、面积公式的推导过程
有关规律:
26、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
27、 用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;
如果将平行四边形框架拉成一个长方形,则他们的。周长不变,面积变大了。
28、三角形和平行四边形面积相等,高相等,则三角形的底是平行四边形的2倍,平行四边形的底是三角形的一半。
29、三角形和平行四边形的面积相等,底相等,则三角形的高是平行四边形的2倍,平行四边形的高是三角形的一半。
30、三角形和平行四边形等底等高,则三角形的面积是平行四边形的一半,平行四边形的面积是三角形的2倍。
31平行四边形面积是与它等底等高的三角形的面积的2倍。
32、三角形面积是与它等底等高的平行四边形面积的一半。
33、同底等高的三角形的面积相等;、
34、两个完全一样的梯形可以拼成一个平行四边形。
35、(顶层根数+底层根数)层数2
36、100以内的质数歌谣
二、三、五、七带十一
十三、十七记心里
十九、二三、二十九
三十一来三十七
四一、四三、四十七
各个都要牢牢记
五十三、五十九
六十一来六十七
七一、七三、七十九
八三、八九、九十七。
37、单位进率
①长度单位:1千米=1000米 1米=10分米
1分米=10厘米 1厘米=10毫米
②面积单位:1平方千米=100公顷 1公顷=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米
⑤时间单位:1世纪=100年 1年=12月 1日=24时
1时=60分 1分=60秒1时=3600秒
五年级数学知识点 篇九
在日常生活当中,一根拉紧的绳子、一根竹竿、人行横道线、都给人以直线的形象,而实际上的直线是两端都没有端点、可以向两端无限延伸、不可测量长度的。
直线的特点:没有端点,可以向两端无限延长。
直线(straightline)是几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由直线平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。在欧几里得几何学中,直线只是一个直观的几何对象。在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。