1. 主页 > 知识大全 >

正方体体积教学设计精选10篇

作为一名为他人授业解惑的教育工作者,时常要开展教学设计的准备工作,借助教学设计可以提高教学效率和教学质量。那么教学设计应该怎么写才合适呢?这里的10篇正方体体积教学设计是快回答小编为您分享的长方体的体积公式的相关范文,欢迎查看参考。

长方体的体积教学设计 篇一

长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

一、重视引导学生经历知识的探究过程。

究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

二、重视学生能力的培养。

叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

三、重视联系学生的生活实际。

脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

四、重视反馈纠正。

反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

总之,这节课充分体现了叶老师先进的教学理念和高超的教学艺术,充分体现叶老师追求课堂教学有效性的探索过程,给我们以深刻的启示和借鉴。当然,艺无止境,教学尤其如此,针对这堂课,我认为以下几个方面还需再继续探究,以达更好的教学效果呢?

可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体的体积教学设计 篇二

一、教材分析:

本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。这节课要在此基础上掌握体积的概念和常用的'体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。

二、教学目标:

1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。

2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。

3、培养学生数学的应用意识。

重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。

难点:理解体积公式的意义。

三、教法与学法

学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。

为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习。

四、教学过程

(一)激情引趣,揭示课题。

任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。

1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。

2.多媒体课件出示一个长方体和一个正方体,利用动画演示把它们切割成棱长1厘米的小正方体,请学生说一说他们的体积分别是多少?是怎样知道的。从中使学生体会到长方体、正方体是由多少个棱长1厘米的小正方体组成的,它的体积就是多少立方厘米。

这时学生就会产生疑问:生活中遇到的计算长方体正方体体积的问题,多数不能切开来数,这种方法在实际生活中行不通,又该怎么办?这样就在学生心里形成了一种悬而未决的状态,一方面自然而然地引出这节课要学习的“长方体和正方体的体积计算”,另一方面也激起了学生探索新知识强烈愿望。

(二)操作想象,探索公式。

小学生的思维特点是以形象思维为主,逐步向抽象思维过渡。根据这一特点,先利用直观学具,引导学生进行实验操作,首先吸引学生,刺激感官,启迪思维,提高兴趣,在头脑中建立清晰的表象,丰富他们的感性认识,也是引导学生的思维逐步由形象走向抽象。

具体的过程是:

(1)让学生以小组为单位用棱长1厘米的小正方体摆长方体,边摆边在表格里记录:长、宽、高和体积

(2)汇报交流,学生在事物投影上演示讲解,教师依次板书在表格中。

(3)请学生观察所摆的长方体的长、宽、高与它的体积有什么关系?

这里要充分发挥学生的主体性,给他们充足的讨论时间,让他们有机会各抒已见,然后根据学生的回答,共同总结出:长方体的体积=长×宽×高。

(4)用字母表示公式,要注意书写形式的指导。

(5)完成例1,学以致用,加深理解。

通过前面的学习学生已经知道了正方体是特殊的长方体,并且在刚才的实验操作中,也有学生摆出了正方体,因此学生很容易就能够由长方体的体积公式推导出正方体的体积公式。需要注意的是用字母表示公式时,使学生明确三个a相乘也可以写成a3,3写在a的右上角。

(三)巩固练习,扩展应用

练习是数学中教学巩固新知,形成技能,发展思维,提高学生分析问题,解决问题能力的有效手段,为了加强学生的理解,使学生能正确运用公式,我设计了多层次的练习:

1通过让学生完成教科书第43页的“做一做”的第一题,先让学生动手操作,这样有助于学生理解长方体的体积与它的长、宽、高的关系,掌握长方体的体积计算公式。

2.做第43页“做一做”的第二题,巩固刚学过的“立方”的知识,要使学生弄清,什么情况下可以写成一个数的立方,一个数立方应该怎样计算。做题时,如果发现学生把3个相同数连加与连乘混淆起来,教师应及时纠正。

拓展运用:

完成练习七第5—8题,让学生运用公式计算。

设计意图:学生明确求体积应先量出它的长、宽、高,再进行计算。这样设计,既能使学生加深对计算长方体的计算方法的掌握,有利于培养学生的动手操作和解决实际问题的能力。

(四)总结全课,质疑解惑。

(1)谈收获:让学生说说这节课学习了什么?

(2)质疑解惑:还有什么疑问。

这样设计目的对新知识进行一次全面的回顾,梳理,内化的过程,同时培养学生总结概括能力和回顾与反思的习惯。

长方体的体积教学设计 篇三

教学基本

内容六年制小学数学第十一册P25—26。

教学目的和要求

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课个性化修改

预习阅读书本25、26页,并初步理解解

教学环节设计

一、以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长×宽×高。

问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:V=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出:正方体的体积=棱长×棱长×棱长。

重点理解的含义,进一步明确的读法、写法。

做“试一试”。

作业做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设计

执行情况与课后小结

人教版五年级下册数学长方体、正方体的体积教案 篇四

教学目标:

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。 教学

教学重点:

使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。

教学难点:

理解长方体的体积公式的推导过程。

课前准备:

小正方体若干个 教法学法 合作法、讨论法

教学过程:

教学环节 第一次备课 动态修改

一、复习导入

1、字典是我们学习的工具书,必须要常备身边的,小明遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?

2、小明在上学的路上,遇到两个物体,怎样才能比较大小呢?3、小明家买了饮水机和微波炉,谁的体积大呢?还能分割吗?怎么办?

这节课我们就来学习长方体的体积的计算。 (小本的字典,体积小)

(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)

二、概括公式

1、学生猜想

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

大胆猜测长方体的体积怎样计算

学生猜想:长方体的体积=长×宽×高

2、动手实践操作

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)

(1)提出小组合作要求

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习

(3)小组派代表汇报

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

3、发现总结长方体体积公式

(1)体积怎么求?我们一起来观察黑板上这几组数字。想一想,长、宽、高的数字与体积的数字有什么关系?

(2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。

板书:长方体的体积=长×宽×高

(3)字母表示:长方体体积用V表示,长用a表示,宽用b表示,高用h 表示,长方体的体积公式用字母表示是V=a×b×h=abh

板书:V=a×b×h= abh,学生齐读公式。

4、迁移推导出正方体的体积计算公式

现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。

教师追问:你们是怎么想的?

学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。

教师板书:正方体的体积=棱长×棱长×棱长

教师说明用字母表示V=a×a×a = a3

说明:a3读作a的立方或a的三次方,表示3个a相乘。

学生齐读公式。

5、教学底面积

长方体和正方体的底面积怎么求呢?

三、练习

1、出示课本30页的例一:生独自完成,集体订正。

2、课本31页做一做。

四、课堂总结

今天你有哪些收获?还有什么疑问?

板书设计:

长方体、正方体的体积

长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长

V=a×b×h= abh V=a×a×a = a3

V=S×h= S h V=S×h =S h

例1. V=abh V= a3

=7×3×4 =6×6×6

=84cm3 =216dm3

长方体的体积教学设计 篇五

教学目标:

1、在操作中,感知出长方体的体积大小与它的长、宽、高等有关,长方体的体积。

2、能运用长、正方体的体积公式,计算长、正方体的体积。并能运用所学知识解决一些实际问题。

3、借助学生自己的动手操作、动口表述及课件的动态演示,培养学生的空间观念。

教学重点:

体积公式的运用及公式的推导过程。

教学难点:

体验公式的推导过程。

教学过程:

一、比较大小,复习引入

1、比一比。出示书包、文具盒。问:谁大?谁小?

其实刚才我们在比他们的什么?体积指的是什么?

2、说出下列图形的体积是多大?你是怎么想的?(都是有棱长为1分米的正方体拼成的)

小结:要知道一个物体的体积,只要知道这个物体含有多少个这样的体积单位。

3、出示橡皮。问:什么形状?它有体积吗?体积多大?请你估一估,猜猜它有多大?

4、揭示课题。

二、动手操作,感知认识

1、拿出12个1立方分米的正方体,小组合作摆一个长方体,并说说它的长、宽、高是多少?体积是多大?

2、汇报交流。问:你们组摆的长方体的长、宽、高是多少?你能说说你们组是怎样摆的吗?体积是多少?

还有不同的摆法吗?(学生边说,老师边演示四种不同的摆法)

3、观察发现:通过刚才的摆,观察这些数据,你发现了什么?

4、再一次合作摆,小学数学教案《长方体的体积》。边摆边说你们组摆的长方体的长、宽、高是多少?又是怎么摆的?

三、启发探究,自主建构

1、出示长5分米、宽3分米、高2分米的长方体。

问:要摆成这样的长方体需要多少个棱长为1分米的正方体?体积是多少立方分米?你能利用手中的学具摆一摆吗?(开始活动,发现不够摆)

问:不够,怎么办?你能在头脑中想象,把它补充完整吗?(又开始活动)

2、汇报交流。并演示摆的过程。

3、出示长8分米、宽4分米、高3分米的长方体。你能摆这个吗?

4、听要求摆。

(1)自己摆一个长6分米、宽3分米、高2分米的长方体,并说说它的体积。

(2)想象一个9米、宽7米、高4米的长方体,并说说它的体积。

5、思考总结。体积与长、宽、高有怎样的关系呢?并快速验证黑板上的数据。

四、解决疑难,运用拓展

1、解决橡皮的体积。要求它的体积,需要知道什么?师提供测量数据,让学生求体积。

2、自己求数学书的体积。

3、出示:亚光纸箱厂生产一种正方体纸板箱,棱长是8分米。体积是多少立方分米?

4、小结正方体的体积公式。

五、全课总结

长方体的体积

正方体体积教学设计 篇六

教学目标:

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

教学重点和难点:

长方体和正方体体积的计算方法,以及其体积公式的推导。

教学过程:

一、复习引入

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)

(3)如果用V表示正方体体积,用a表示它的棱长字母公式为:V=a

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:V=a3(板书)

三、议一议

长方体和正方体的'体积公式有什么相同点?

长方体和正方体底面的面积叫做底面积。

长方体(或正方体)的体积=底面积×高

如果用S表示底面积,上面的公式可以写成:

V=Sh

四、巩固练习

计算下面图形的体积

板书设计:

正方体体积=棱长×棱长×棱长 长方体(或正方体)的体积=底面积×高

V=a3 V=Sh

长方体的体积教学设计 篇七

教学目标

知识与技能

(1)理解体积的含义。

(2)认识常用的体积单位:立方米、立方分米、立方厘米。

(3)能正确区分长度单位、面积单位和体积单位的不同。

过程与方法

(1)运用观察实验的方法理解体积的含义。

(2)结合生活中的事物感知体积单位的大小。

情感态度与价值观

(1)发展学生的空间观念,培养学生的思维能力。

(2)渗透事物之间普遍联系的辩证唯物主义。

教学重点使学生感知物体的体积,初步建立1立方米、1立方分米、1立方厘米的体积观念。

教学难点帮组学生建立体积是1立方米、1立方分米、1立方厘米的大小的表象,能正确应用体积单位估算常见物体的体积。

教学用具教师准备:盛有红色水的大玻璃杯一个,用绳捆着的大小石头各一块,沙一堆;投影仪和1立方米的木条棱架一个;体积是1立方分米、1立方厘米的正方体各一个。学生准备:12个1立方厘米的正方体学具。

教学过程

一、揭示课题

我们已经学习了长方体和正方体,掌握了长方体和正方体的表面积计算方法,这节课我们将继续学习和研究长方体和正方体的一些知识。

二、探索研究

1.实验观察

观察(1):把一块石头放入有红色水的玻璃杯中,水位有什么变化?这是为什么?

观察(2):这只杯子里装满了细沙,现在把细沙倒出来放在一边,取一块木块放入杯子里,再把刚才倒出来的沙装回到杯子里,你发现了什么情况?为什么?

观察(3):在(1)中把石块换成小一点的,你观察到什么?为什么?

图片观察:投影出示课本上的火柴盒、工具箱、水泥板,哪一个物体所占的空间大?

结论:物体所占空间的大小叫做物体的体积。(板书课题:体积)

加深理解:(1)你知道什么是长方体和正方体的体积?(2)你能说出身边的哪些物体的体积较大?哪些物体的体积较小?(3)做第30页的“做一做”。

2.教学体积单位。

(1)介绍体积单位。

常用的体积单位有:立方米、立方分米、立方厘米。

(2)1立方米、1立方分数、1立方厘米的体积各有多大。

1立方厘米:①让学生拿出1立方厘米的小正方体并量出它的棱长。②看看我们身边的什么的体积大约1立方厘米。

1立方分米:出示一个棱长1分米的正方体,你知道它的体积是多少吗?我们生活中的哪些物体的体积大约1立方分米。

1立方米:出示1立方米的木条棱架,让同学们上来看一下1立方米的体积的大小。我们生活中,哪些物体的体积大约1立方米?

(3)建立表象,感知大小

投影显示第36页的第2题,让学生口答。

3.长度单位、面积单位、体积单位的联系与区别。

投影显示第31页的“做一做”的第一题,让学生说。

三、课堂实践

1、做练习七的第1题,让学生拿出准备好的12个小正方体先摆后说。

2、做练习七的第3题,学生独立做后集体订正。

四、课堂小结

学生小结今天学习的内容。

旁批:

后记:

长方体的体积教学设计 篇八

教学内容:

北师大出版社小学数学教科书数学五年级下册第46—47页。

一、教学内容简析:

这一内容是在学生理解了体积的概念和体积单位的基础上进行教学的。由计算平面图形的面积扩展到研究立体图形的体积计算,是学生空间思维发展的一次飞跃。长方体、正方体的体积计算,是学生形成体积的概念、掌握体积的计量单位和以后计算各种形体体积的基础。

二、教学环境:

通过“猜想——动手操作验证——探究”的教学过程,学生们兴趣盎然的参与到教学活动的每一个环节当中。借助多媒体的教学手段。演示实验的过程,帮助学生建立空间观念,形成清晰的表现。

三、教学目标:

知识技能目标:

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

过程与方法策略目标:通过“猜想——验证”的过程,形成发现、创新的过程。从而获取数学活动经验。

能力目标:培养学生动手操作、抽象概括、归纳推理的能力。

情感目标:激发学生学习数学、发现数学的兴趣,学会与人合作。

教学重点:使学生理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。

教学难点:理解长方体的体积公式的推导过程。

四、教学设计意图:

在本课的教学中,让学生从生活实际需要中体会长方体的体积在生活中的应用,从而产生研究长方体体积的计算的需求,通过观察生活中的实物,发现长方体的体积与长宽高有关系,提出猜想,确定研究的方向。在学生以小组为单位,动手操作探究,来验证猜想的正确。使学生经历知识的建构的过程。通过解决生活中的实际问题,运用长方体体积计算的方法。体会数学运用于生活实际。

五、教学媒体的选择和应用:

这节课的学习重点是:使学生理解并掌握长方体的体积公式,能正确计算。这节课的学习难点是:动手实验、发现长方体的体积公式。

六、教学实施具体过程:

(一)激发兴趣,唤起生活经验和旧知

课件出示:

1、字典是我们学习的工具书,必须要常备身边的,淘气遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)

2、在我们生活中经常会遇到比较物体体积大小的情况,请你观察下面的这几组物体,你能发现物体体积的大小可能与物体的什么有关系?(与物体的长、宽、高都有关系。)今天我们就来研究长方体的体积、[意图:导入新课用学生熟悉的工具书,引入新课,体会物体的体积有大有小,课件出示体积大小不同的字典,直观形象的看出体积有大有小。]

(二)唤起旧知

提出猜想

1、看一看下面的长方体的体积是多少?为什么?

体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。

(1)我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。

(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?

学生1:12立方厘米。追问怎么得到的?

学生2:一排是4立方厘米,3排就是4×3=12立方厘米。

(3)再加上这样的一层,这个长方体的体积是多少?你是怎么计算的?

一层是12立方厘米,2层就是12×2=24立方厘米这个长方体的长宽高分别是多少?学生1:24立方厘米。

学生2:长是4厘米,宽是3厘米,高是2厘米。

板书:体积

24

3、启发:生活中计量物体的体积,都用“切成若干个体积单位”来计算,行的通吗?观察板书上的几个数字之间有什么关系?大胆猜测体积与什么有关?有什么关系?

猜想:

学生1:用计算公式。

学生2:与长宽高有关。因为表面积就与长宽高有关?

学生3:长方体的体积=长×宽×高?

(三)动手实践

验证猜想

1、这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

(1)请同学们小组合作,用这些1立方厘米的小正方体木块拼成形状不同的长方体,每拼成一种就记录下它的长宽高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。

引导学生全员参与公式的推导。明确小组学习的任务哪个小组愿意先汇报你们的研究过程和成果?(在实物投影上边摆边说)

第一组:把12个正方体木块摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米,我们认为猜想的公式是正确的。

第二组:把18个正方体木块摆成1排,每排6个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米,我们认为猜想的公式是正确的。

第三组:把12个正方体木块摆成2排,每排6个,摆1层。这个长方体的长是6厘米,宽是2厘米,高是1厘米,体积是12立方厘米,我们认为猜想的公式是正确的。刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。

[意图:让学生以小组为单位自己动手分组操作拼长方体、填写报告单,为学生创新能力培养创造了条件。同时让学生自主地去感知、观察发现长方体的长、宽、高与小正方体个数之间的关系,降低体积公式推导的难度。从而提出创造性问题,逐步形成创造意识。]

2、发现总结长方体体积公式

(1)师问:每排的个数、每层的排数、层数与长宽高有什么关系?

生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。

生二:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。

师:体积怎么求?为什么?

学生们学会了总结长方体体积的计算方法。

(2)师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。

[意图:分小组学习,是学生主动理解学习过程、解决问题的重要途径。通过学生交流、师生交流,比较、分析实验过程,从而引导学生主动探索出长方体体积与长、宽、高的关系。

学生们通过自己探索,学会了一定的学习方法。]课件演示公式的推导过程。

(3)字母表示:长方体体积用V表示长用a表示,宽用b表示,高用h表示,长方体的体积公式用字母表示是V=a×b×h;=;abh。

3、长方体的体积计算公式的应用

(1)师问:在生活中,怎样计算长方体的体积?例:一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

学生1:长方体的体积=长×宽×高。全班动笔做一做。

(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。

长6分米,宽4分米,高3分米,求体积。长6厘米,宽6厘米,高5厘米,求体积。

(3)迁移推导,再次尝试

长6厘米,宽6米,高6米,求体积。

是什么立体图形?正方体。

教师指着长、宽、高都是6厘米的长方体提问:这个图形有什么特征?你怎样想正方体体积的计算方法?与同学交流你的想法?学生讨论后得出:正方体的体积=棱长×棱长×棱长,用字母表示V=a×a×a;=;a3

说明理由:正方体是特殊的长方体。

[意图:尝试练习是运用长方体体积公式解决新问题的渠道。同时通过学生说思考过程,不但突出了掌握长方体、正方体体积的计算方法这一重点,而且培养了学生动手、动口及创新发展的能力。]

(4)继续观察

阴影部分的面积是上面各个图形底面的面积,称为底面积。

长、正方体的体积=底面积×高V=S×h

(四)学以致用

巩固提高

1、判断(判断对错,说明理由)

(1)一个正方体的棱长是2米,它的体积是8立方米。()

(2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。()

(3)一个棱长为6分米的正方体,它的表面积和体积相等。()

2、提高题

(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)

(2)一个正方体的棱长总和是36厘米,它的体积是多少?

3、实际应用

(1)雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是14.7米,宽2.9米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh=2.9×1×14.7

=42.63(m3)

答:这块巨大的花岗岩石碑的体积是42.63立方米。

(2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?

V=a3=6×6×6

=216(cm3)

答:这种魔方的体积是216立方厘米。

4、发展题

一块不规则的石头,要求学生借助于两种工具:一个装有水的长方体容器,一把直尺,把这块不规则的石头的体积求出来,只要求说出自己的方法。

[意图:巩固练习的练习题设计,力求突出重点,解决难点,利用多样的题型,把基础认知与创新能力发展紧密结合起来,以达到发展学生思维、形成技能的目的。]

(五)谈谈你今天的收获

板书设计:

长方体的体积=长×宽×高

V=a×b×h

=abh

正方体的体积=棱长×棱长×棱长

V=a×a×a

=a3

长、正方体的体积=底面积×高

V=S×h教后记:

本课注重让学生从体验中学习,在体验中自我建构新知,在体验中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,教师很自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些客观规律。让学生在发现—验证—解释中体会数学,探究知识。学生们在教师的引导下通过猜测、动手操作、交流讨论发现了长方体的长、宽、高和体积之间的关系,总结出了计算长方体体积的公式。在这一过程中,学生不仅掌握了计算长方体体积的数学公式,还知道了应该如何独立思考,学会了与他人合作。在论证的过程中,同学们动手操作,分别派出各组的代表讲解各自验证的全过程,最终使全班同学达成共识,推导出了长方体的体积公式。通过多媒体的应用,使学生建立清晰的表象,增强了学生的空间想象能力。在从事数学活动的过程中获得了较为广泛的数学活动经验。在探索的过程中培养了学生的合作意识和创新精神。我想,把“如果”变为现实,转换一种角度更多地把学生的思维尽情地施放出来,可能得到的是一片蔚蓝的天空。

长方体的体积教学设计 篇九

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

来学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积【演示动画“长方体体积1”】

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.【演示动画 “长方体体积2”】

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.【演示课件“正方体体积”】

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

0.4

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重2.7千克,这块石料重多少千克?

六、板书设计.

长方体的体积教学设计 篇十

教学内容:

推导长正方体的体积计算方法

教学目标:

1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。

2、培养学生空间和空间想象能力。

教学重点:

长正方体体积公式的推导。

教学难点:运用公式计算。

教学设计:

一、出示课题,学习目标

理解长方体和正方体体积公式的推导,能运用公式进行计算。

二、出示自学指导

认真看课本观察:每排个数、排数、层数与体积有什么关系?如何计算长方体的体积?

三、学生看书,自学

四、效果检测

如何计算长方体的体积?

板书:长方体体积=长×宽×高

字母公式:V=abh

五、练习

1、一个长方体,长7厘米,宽4厘米,高3厘米,它的面积是多少?

根据长方体和正方体的关系,你能想出正方体的体积怎样计算吗?

正方体体积=棱长×棱长×棱长V=aaa=a3读作a的立方。

2、一块正方体的石料,棱长是6分米,这块石料的体积是多少立方分米?

请同学们摆一个体积是24立方厘米的长方体,摆后说一说长、宽、高各是几厘米?

长方体体积=长×宽×高提问:长方体的长、宽、高不同,体积相同这是为什么?

六、小结:

怎样计算长、正方体的体积?计算长方体和正方体的体积有没有其他的方法?这个问题我们下节课研究。

三人行,必有我师焉。以上这10篇正方体体积教学设计是来自于快回答的长方体的体积公式的相关范文,希望能有给予您一定的启发。