平行四边形(Parallelogram),是在同一个二维平面内,由两组平行线段组成的闭合图形。下面是快回答给大家整理的7篇平行四边形教案,希望可以启发您对于平行四边形的写作思路。
小学四年级数学上册平行四边形教案 篇一
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级上册70页至71页。
教学目标:
1。通过操作和讨论掌握平行四边形和梯形的特征,探讨平行四边形和长方形、正方形的关系。
2。培养分分析观察能力、动手操作能力和有序思考的能力,培养学生的空间观念和想像力。
3。体会数学学习的乐趣,树立学习信心,感受数学价值。
教学重点:
通过操作和讨论掌握平行四边形和梯形的特征。
教学难点:
了解平行四边形与长方形和正方形的关系。
教学准备
教具:正方形、长方形、平行四边形和梯形图各一;多媒体课件。
学具:直尺,三角板,练习纸一张。
教学过程:
一、回顾旧知,引入新课。
师:孩子们,在我们三年级时已经学过并认识了许多的四边形,那怎样的图形叫四边形呢?
师:今天四边形之家要邀请它的家族成员来开联欢会,看,它们来了。(课件出示)你还认识它们吗?请你说一说你认识的图形的名称。(生说名称,教师相应的课件出示名称)
师:你能把它们分分类吗?
师:长方形和正方形是我们的老朋友了,你们能介绍它们的边与角各有什么特征吗?
师:这两个图形(出示和,并粘贴在黑板上)你能试着说一说它的特征吗?
师:长方形和正方形我们已经很熟悉了,所以大家描述得既准确又充分,(拿下长方形和正方形),指着平行四边形和梯形说:这两个图形我们不熟悉,所以描述的信息不够准确,没关系,通过本节课的学习,会让你清楚的认识平行四边形和梯形。
二、探索发现,掌握特征。
1。联系生活,建构概念
师:其实生活中就有许多物体的表面是平行四边形或梯形。(课件出示一组图片)找一找,有平行四边形吗?梯形呢?说说看!
师:你们真会观察啊!除了这些,你能举出生活中的哪些物体的表面是平行四边形和梯形呢?(生举例)
师:看来平行四边形和梯形在生活中应用很广泛,既然他们的应用如此广泛,我们就来研究什么叫做平行四边形,什么叫做梯形。(板书课题:平行四边形和梯形)
2。观察图形,直观感知
师:好了孩子们,先来看看平行四边形有什么特征?梯形有什么特征呢?
生说:平行四边形左右的边是平行的,平行四边形的上下的边也是平行的。师指图比划,梯形的上下边是平行的。
师:刚才这位同学说平行四边形的两组对边分别平行,梯形的一组边平行(老师说时带动作),这是我们通过观察得到的信息,真的是这样吗?下面我们就来验证。
3。验证猜想。
师:现在在你们的练习纸上有一个平行四边形和一个梯形,请你拿出工具检查平行四边形和梯形对边是否平行。
学生活动:验证。
活动结束师让学生在实物投影上就图说明。
师:通过刚才的验证他们组有这样的发现,其他组和他的发现一样的请举手,哦,大家都有这样的发现。是不是其他的平行四边形和梯形也具有这样的特点呢?
4。整体呈现,确定概念。
(1)平行四边形。
师:我们首先来看平行四边形。请看屏幕:课件出示三个不同的平行四边形并验证。
师:验证之后可以证实我们刚才的发现是正确的,是吗?谁再来说一说我们刚才的发现?
引导学生得出:两组对边分别平行的四边形叫做平行四边形。
学生读。
师:闭上眼睛想一想,你的脑子中的平行四边形是什么样的?
(2)梯形
师:我们知道了什么叫平行四边形。现在我们来看梯形。请看屏幕:课件出示三个不同的梯形并验证。
师:现在我们又证实了刚才梯形的`发现是正确的,谁再来说一说刚才的发现?
引导学生得出:只有一组对边平行的四边形叫做梯形。
师:刚才这个同学发言中有一个特别重要的词,谁发现了?你能解释什么是“只有”吗?
学生读概念,闭上眼睛想一想梯形的样子。
5。对比概念,上升理解。
师:(指板贴平行四边形和梯形图)同学们,既然我们知道了平行四边形和梯形的概念了,谁说说它们的共同点是什么?
师:但也有不同,谁来说说哪里不同?
师:加着重号“分别”是什么意思?“只有”是什么意思?能不能不要这两个字?
三、巩固知识,加深理解
师:既然大家已经知道了什么叫做平行四边形、什么叫做梯形,那么,请你迅速的判断一下。
课件出示:下面的图形中.是平行四边形的画“○”,是梯形的画“√”。
(在完成此题的过程中,如果出现争议,则让学生议一议;无争议则提问:为什么在长方形下面画“○”?为什么说它是特殊的平行四边形?)
四、探讨四边形间的关系
师:到现在为止,我们学过了长方形、正方形、平行四边形和梯形,如果分别用一个集合圈来表示一种图形,这几种图形在四边形这个大家庭中应该站什么位置呢?(课件出示集合圈)
师:你会选择哪一个?为什么?(放大正确集合图)
师:谁能根据这个图说说它们的关系?(生说)
五、灵活应用,解决问题
师:看来,同学们对于各种四边形之间的关系已经很了解了,说到四边形,看。老师这里有一个(课件出示:)可它被数学书挡住了,猜一猜,它可能是什么图形呢?
继续演示:不可能是……?可能是……?
不可能是……?可能是……?
一定是……?为什么?
师:其实谜底早在我们的意料之中!
师:通过一次次的猜想,我能感觉对于平行四边形和梯形的了解越来越深入,想挑战吗?
2.分图形。
呈现题目:如果在平行四边形里画一条线段,把它分成两部分,这两部分可能是什么图形?画画看吧。
平行四边形的认识教案 篇二
教学目标
(一)使学生理解平行四边形的概念及其特性,并会画平行四边形的高
(二)使学生掌握长方形、正方形和平行四边形的关系
(三)进一步提高学生观察、比较能力和作图能力
教学重点和难点
理解和掌握平行四边形的定义及其特性,画平行四边形的高是教学重点;理解长方形、正方形与平行四边形之间的关系是难点
教学过程设计
(一)复习准备
我们已经学过一些几何图形,观察一下这些图形有什么共同的特点?(投影)
在明确它们都是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形
提问:我们学过哪些四边形呢?
(学过的四边形有长方形、正方形、平行四边形)
你能举例说说哪些物体表面是平行四边形吗?
教师出示挂图,让学生初步感知平行四边形
我们已初步认识了平行四边形,那么什么叫平行四边形?它有什么特性?这就是我们今天要研究的课题(板书课题:平行四边形)
(二)学习新课
1、理解平行四边形的定义
首先出示一组图形:
这些图形是什么形?它们有什么特征?
①动手测量
指名一学生到黑板上用三角板检验一下,每个图形的对边怎样
其余同学用三角板检验课本151页3个图形的对边
然后再用尺子度量一下每组对边的长怎样
②抽象概括
根据你测量的结果,能说说什么叫平行四边形吗?
小组先议论一下,(可能说出每组对边分别相等,也可能说出平行四边形每组对边平行)再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切含义
两组对边分别平行的四边形叫做平行四边形(板书)
教师强调说明:只要四边形的每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”
反馈:判断下面图形哪些是平行四边形?(投影)
2、平行四边形的特性
同学们已经学过三角形,三角形具有稳定的特性,那么平行四边形有什么特性呢?
(1)教师演示
教师拿一长方形木框,用两手捏住长方形的。两个对角,向相反方向拉观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角
(2)动手操作
学生自己动手,把准备好的长方形框拉成平行四边形,并测量一下两组对边是否还平行
(3)归纳平行四边形特性
根据刚才的实验、测量,引导学生概括出:平行四边形有不稳定性(板书)
(4)对比
三角形具有稳定性,不容易变形平行四边形与三角形不同,容易变形,也就是具有不稳定性
这种不稳定性在实践中有广泛的应用你能举出实际例子来吗?(如汽车间的保护网,推拉门、放缩尺等)
3、平行四边形的底和高
(1)认识平行四边形的底和高
出示:
教师边演示边说明:
从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高这条对边叫做平行四边形的底
(2)找出相应的底和高
出示:(投影)
观察上图中,有几条高?它们相对应的底各是哪条线段?
从而让学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC
(3)画平行四边形的高
同学们已经学过三角形画高的方法,平行四边形高的画法与其相同,都用过线外一点画已知直线的垂线的方法从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高这里高要画在平行四边形内,不要求把高画在底边的延长线上
同学动手画高:152页“做一做”
4、教学长方形、正方形和平行四边形的关系
教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形还可把平行四边形变成长方形,比较一下长方形和平行四边形的异同点
引导学生明确:相同点是两组对边都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形
比较正方形和平行四边形的相同点和不同点
引导学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形还可看作是特殊的长方形
这三种图形之间的关系可以用集合图来表示
(三)巩固反馈
1、说说什么叫做平行四边形?它有什么特性?
2、在下面图形中画高,并指出它的底
3、在下面图形中,画出两条不同的高
4、说一说平行四边形、长方形和正方形之间的关系
(四)作业(略)
课堂教学设计说明
本节课是在学生对平行四边形有了初步感知的基础上,通过直观演示,操作实践等手段,给学生建立明确的概念
新课分为四个部分
1、首先让同学利用前面讲过的检验平行线的方法,检查三个不同形状的平行四边形,然后再用尺子度量一下每组对边的长度,让学生从实践中发现平行四边形的特征,从而抽象概括出平行四边形的定义
2、其次通过教师的演示和学生实际操作,发现平行四边形的特性,就是具有不稳定性
3、然后认识平行四边形的底和高,并会画高
4、最后通过比较长方形、正方形和平行四边行的异同点,明确它们的关系:正方形是特殊的长方形,长方形、正方形都是特殊的平行四边形并用集合图表示
5、在教学或练习中,既要重视直观演示,运用比较的方法,又要加强动手操作,量一量、画一画等,让学生在实践中既获得知识,又提高能力
板书设计
由四条线段围成的图形叫做四边形
两组对边分别平行的四边形叫做平行四边形
特性:不稳定性
画出两条不同的高
平行四边形教案 篇三
一、内容和内容解析
1.内容
平行四边形对角线的性质。
2.内容解析
这节课承接了上一节平行四边形的性质:对边相等,对角相等,本节继续研究对角线互相平分的性质,课本先设置一个探究栏目,让学生发现结论,形成猜想,然后利用三角形全等证明这个结论,对角线互相平分是平行四边形的重要性质,在九年级上册“旋转”一章,通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分,学生会有进一步体会。平行四边形是最基本的几何图形,它在生活中有着十分广泛的应用。这不仅表现在日常生活中有许多平行四边形的图案,还包括其性质在生产、生活各领域的实际应用。是中心对称图形的具体化,是以后学习平行四边形判定的重要依据。
教科书例2是的平行四边形对角线的性质的直接运用,而且涉及勾股定理以及平行四边形面积的计算。
基于以上分析,本节课的教学重点是:平行四边形对角线性质的探究与应用。
二、目标和目标解析
1.目标
(1)探究并掌握平行四边形对角线互相平分的性质。
(2)能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题。
2.目标解析
达成目标(1)的标志是:能发现平行四边形对角线互相平分这一结论并形成猜想,会利用三角形全等证明猜想。
达成目标(2)的标志是:能发现平行四边形的边、角、对角线等基本要素间的关系,会运用等量代换等进行线段长、图形面积等的计算,掌握简单的逻辑论证。
三、教学问题诊断分析
本节课在已学习了三角形全等证明,平行四边形定义,平行四边形边、角的性质的基础上,在积累了一定的经验的情况下学习本节课内容。例2是既是巩固平行四边形对角线互相平分的性质,又复习了勾股定理以及平行四边形面积的计算。这些问题常常需要运用勾股定理求平行四边形的高或底。这些问题比较综合,需要灵活运用所学的有关知识加以解决。
基于以上分析,本节课的教学难点是:综合运用平行四边形的性质进行有关的论证和计算。
四、教学过程设计
引言:前面我们研究了平行四边形的边、角这两个基本要素的性质,下面我们研究平行四边形对角线的性质。
1. 引入要素 探究性质
问题1 我们研究平行四边形边、角这两个要素的性质时,经历了怎样的过程?
师生活动:学生回顾我们研究平行四边形边、角这两个要素的性质时经历的过程,并请学生代表回答。
设计意图:回顾研究研究平行四边形边、角这两个要素的性质时经历的过程,总结研究平行四边形的'性质的一般活动过程(即观察、度量、猜想、证明等),积累研究图形的活动经验,为本节课研究对角线要素作准备。
问题2如图,在ABCD中,连接AC,BD,并设它们相交于点O,OA与OC,OB与OD有什么关系?你能证明发现的结论吗?
师生活动:启发学生去发现并猜想:平行四边形的对角线互相平分。
你能证明上述猜想吗?
教师操作投影仪,提出下面问题:
图中有哪些三角形全等?哪些线段是相等的?请同学们用多种方法加以验证。
学生合作学习,交流自己的思路,并讨论不同的验证思路。
教师点拨:图中有四对三角形全等,分别是:△AOB≌△COD,△AOD≌△COB,
△ABD≌△BCD,△ADC≌△CBA.有如下线段相等:OA=OC,OB=OD,AD=BC,AB=DC证明中应用到“AAS”,“ASA”证明。
师生归纳整理:
定理:平行四边形的对角线互相平分。
我们证明了平行四边形具有以下性质:
(1)平行四边形的对边相等;
(2)平行四边形的对角相等;
(3)平行四边形的对角线互相平分。
设计意图:应用三角形全等的知识,猜想并验证所要学习的内容。
2.例题解析 应用所学
问题3如图,在ABCD中,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积。
师生活动:教师分析解题思路, 可以利用平行四边形对边相等求出BC=AD=8,CD=AB=10,在求AC长度时,因为∠ACB=90°,可以在Rt△ACB中应用勾股定理求出AC= =6,由于OA=OC,因此AO=3,求ABCD面积是48,学生板演解题过程。
变式追问:在上题中,直线EF过点O,且与AB,CD分别相交于点E,F.求证:OE=OF.图中还在哪些相等的量?
设计意图:对于几何计算或证明,分析思路和方法是根本,本题既巩固平行四边形对角线互相平分的性质,又复习勾股定理和平行四边形面积计算的知识,通过本例,让学生学会如何分析,渗透“综合分析法”。 让学生理解平行四边形对角线互相平分的性质的应用价值。
3.课堂练习,巩固深化
(1)ABCD的周长为60cm,对角线交于O,△AOB的周长比△BOC的周长大8cm,则AB、BC的长分别是_________.
(2)如图,在ABCD中,BC=10,AC=8,BD=14,△AOD的周长是多少?△ABC与△DBC的周长哪个长?长多少?
设计意图:通过练习,深化理解平行四边形的性质,提高选择运用平行四边形定义、性质解决问题的能力。
4.反思与小结
(1)我们学习了平行四边形的哪些性质?
(2)结合本节的学习,谈谈研究平行四边形性质的思想方法。
(3)根据研究几何图形的基本套路,你认为我们还将研究平行四边形的什么问题?
5.布置作业
教科书P49页习题18.1 第3题;
教科书第51页第14题。
平行四边形教案 篇四
教学过程
一、课堂引入
1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?
2.你能说说平行四边形性质与判定的用途吗?
(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)
3.创设情境
实验:请同学们思考:将任意一个三角形分成四个全等的`三角形,你是如何切割的?(答案如图)
图中有几个平行四边形?你是如何判断的?
二、例习题分析
例1(教材P98例4)如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.
分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.
方法1:如图(1),延长DE到F,使EF=DE,连接CF,由△ADE≌△CFE,可得AD∥FC,且AD=FC,因此有BD∥FC,BD=FC,所以四边形BCFD是平行四边形.所以DF∥BC,DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
(也可以过点C作CF∥AB交DE的延长线于F点,证明方法与上面大体相同)
方法2:如图(2),延长DE到F,使EF=DE,连接CF、CD和AF,又AE=EC,所以四边形ADCF是平行四边形.所以AD∥FC,且AD=FC.因为AD=BD,所以BD∥FC,且BD=FC.所以四边形ADCF是平行四边形.所以DF∥BC,且DF=BC,因为DE=DF,所以DE∥BC且DE=BC.
定义:连接三角形两边中点的线段叫做三角形的中位线.
【思考】:
(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?
(2)三角形的中位线与第三边有怎样的关系?
(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)
三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半。
《平行四边形的性质》教案 篇五
一、说教材
四边形是日常生活中常见的一种图形。它与其他众多的几何图形一起构成了多姿多彩的世界。平行四边形作为最基本的几何图形,作为“空间与图形”领域中研究的主要对象,它在实际生产和生活中有着广泛的应用。
本节课的主要内容是平行四边形的概念和性质,平行四边形是一种特殊的四边形,特殊在两组对边分别平行。由于这个特殊性导致它具有一般四边形不具有的特殊性质:这些特殊的性质有助于我们解决许多实际生活中的问题,要利用这些特殊的性质的前题是判定这个四边形是个特殊的四边形,因此研究平行四边形的三个切入点是:定义、性质、判定。
1、教学目标
(一)知识与技能:
1、理解并掌握平行四边形的定义;
2、掌握平行四边形的性质定理1及性质定理2;
3、培养学生综合运用知识的能力
(二)过程与方法经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力。
(三)情感态度与价值观培养学生严谨的思维和勇于探索的思想意识,体会几何知识的内涵与实际应用价值。
教学重难点
重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.
难点:运用平行四边形的性质进行有关的论证和计算
二、说教法
本节课的内容特点:教学内容来源于生活,要尽量给学生提供一定的探索空间,让学生去发现结论,由学生自己去探索、去归纳总结,此外,学生在小学阶段已对平行四边形有了初步、直观的认识,为平行四边形的研究提供了一定的认知基础,但对其本质属性理解并不深刻,在七年级的学习阶段学生已经掌握了证线段相等或角相等的一般办法,即证全等三角形。初步具有了用几何语言对命题进行推理证明的能力,这为推理平行四边形的性质奠定了基础。
根据本节课的教材内容特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用观察发现法为主,多媒体演示法为辅。教学中,设计启发性思考问题,创设问题情境,引导学生思考。教学适时运用电教媒体化静为动,激发学生探求知识的欲望,逐步推导归纳得出结论,使学生始终处于主动探索问题的积极状态,从而培养思维能力。具体的教学方法:观察动手实践自主探索合作交流
三、说学法
教给学生正确科学的学习方法,培养良好的学习习惯,主要指导学生的学习方法有:
1、观察猜想。以学生的观察、猜想为主,要求学生多观察,大胆猜想,主动探索来了解平行四边形的性质。
2、合作交流。采取积极引导、主动参与、互相交流来组织教学,使学生真正成为教学的主体,体会成功的喜悦。
3、总结归纳。通过例题探索、练习反馈、收获园地,引导学生总结归纳本节课学习的主要内容和解决问题的方法以及注意的问题,发挥学生的积极性和主动性,培养学生良好的学习习惯。
四、说教学过程
根据本节课的特点我采用以下教学环节来完成教学目标:
教学过程
一、共同回顾:
1.什么样的图形叫四边形?
2.四边形的内角和是多少度?外角和呢?
3.四边形的对角线有多少条?
4.小学学习过哪些特殊的四边形?
二、新课
1、平行四边形的定义:
(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)几何语言表述∵AB∥CDAD∥BC∴四边形ABCD是平行四边形
(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用表示,如□ABCD
(5)对边:平行四边形相对的边称为对边,相对的角称为对角.
对边:AB与CD,AD与BC.对角:∠A和∠C,∠B和∠D.
2、探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
∵四边形ABCD是平行四边形
∴AB∥CD,AD∥BC,
∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A=180°.
结论:平行四边形的对边平行,邻角互补
问:平行四边形的对边之间、对角之间还有什么数量关系?由此你能得到什么结论?
由∠A+∠B=∠B+∠C=∠C+∠D=∠D+∠A
你能得出平行四边形的对角之间有何关系?
性质1:平行四边形的对角相等
四边形ABCD中,
∵AB∥CD,AD∥BC,
∴∠A=∠C,∠B=∠D.
平行四边形的对边在位置上平行,在大小上有何关系?如何证明?
(学生猜想,讨论)
已知:如图,在四边形ABCD中,AB∥CD,AD∥BC.
求证:AB=DC,AD=BC
分析:证明边相等,常见的方法是证明两三角形全等,引导学生添加对角线辅助线
证明:连结AC
∵AB∥CD,AD∥BC
∴∠1=∠2,∠3=∠4
在△ABC和△CDA中,
∠1=∠2
AC=CA
∠3=∠4
∴△ABC≌△CDA
∴AB=DC,AD=BC
性质2:平行四边形的对边相等。
强调:连接对角线是一种常见的作辅助线的方法,将四边形的问题转化为三角形解决
三、新知运用
例1.如图:在平行四边形ABCD中,根据已知的边角大小,写出其他边角的大小。
设计意图:纯平行四边形性质的简单运用
例2.已知:如图,ABCD中,BE平分∠ABC交AD于点E.
(1)如果AE=2,求CD的长。
(2)如果∠AEB=40°,求∠C的度数。
设计意图:(1)问综合运用角平分线的性质、平行线的知识、等腰三角形判定以及平行四边形的性质
(2)问综合三角形的内角和定理及平行四边形的性质
四、学生反馈练习
课件
五、课时小结
平行四边形的性质
(1)共性:具有一般四边形的性质
(2)特性:角平行四边形的对角相等,邻角互补
边平行四边形的对边相等,对边平行
平行四边形常见辅助线的添加:连接对角线转化三角形解决
六、课后作业
课本第78页练习第1、2题
平行四边形教案 篇六
《平行四边形的面积》说课稿
各位评委,你们好!
我说课的题目是《平行四边形的面积》,我准备从说教材,说教法、学法,说教学过程三个部分完成说课。
一、说教材。
《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。它是在学生已经掌握了长方形和正方形的面积计算、面积概念和面积单位,以及认识了平行四边形,清楚了其特征及底和高的概念的基础上来进行教学的。学生学了这部分内容,能为以后学习三角形和梯形的面积公式打下基础。为了更好地体现《数学课程标准》的理念,通过学习来解决生活中的实际问题,让学生感受到数学就在身边,人人学有价值的数学。
根据以上对教材的理解与内容的分析,按照新课程标准中掌握4~6学段空间与图形的要求,我将本节课的教学目标定为:
1、知识目标:能应用公式计算平行四边形的面积;
2、能力目标:理解推导平行四边形面积计算公式的过程,培养学生抽象概括的能力。
3、情感目标:发展学生的空间观念,培养学生的思维能力;在解决实际问题的过程中体验数学与生活的联系。
根据新课程标准中的教学内容和学生的认知能力,我将本节课的。教学重点定为:
能应用公式计算平行四边形的面积。
教学难点定为:理解平行四边形面积的推导过程,并能运用公式解决实际问题。
二、说教法、学法。
根据本节课的教学内容和学生的思维特点,以及新课程理念学生是学习的主体,教师是引导者、组织者、合作者,我准备采用以下几种教法和学法:
1、教学中,我将通过生活情境的创设,利用多媒体教学课件,引发学生学
习数学的兴趣和积极思维的动机,引导学生主动地探索。
2、动手实践、主动探索、合作交流是学生学习数学的重要方式。由直观到抽象,层层深入,遵循了概念教学的原则和学生的认知规律。通过动手操作,把平行四边形转化成长方形,再现已有的表象,借助已有的知识经验,进行观察、分析、比较、推理、概括出平行四边形面积的计算公式。教学中充分体现学生的主体地位,充分调动学生的学习积极性和主动性。给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考。
3、满足不同层次学生的求知欲,体现因材施教的原则。通过灵活多样的练习,巩固平行四边形面积计算方法,提高学生的思维能力。
4、联系生活实际解决身边的问题,让学生初步感受数学与生活的密切联系,体验数学的应用,促进学生的发展。
三、说教学过程。
第一环节:创设情境、激趣导入。
通过创设情境:小兔乐乐想从三快草地中,找一块面积最大的草地去吃草,却不知道怎么计算哪块土地的面积最大,请同学们帮助解决。学生利用以前的知识能够计算出其中正方形和长方形草地的面积,不能计算出平行四边形草地的面积。
这一环节的设计,不仅复习了旧知识,还体现出数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
第二环节:活动探究,获取新知。
学生独立思考,动手操作,尝试用不同方法计算平行四边形的面积。根据这些方法,展开其中的割补法,通过转化—找关系—推导这一过程,让学生经历操作、观察、分析、比较、推理、交流,自己根据长方形面积公式概括出平行四边形面积的计算公式。
这一环节的设计,培养了学生思维的灵活性,发挥了学生在课堂教学中的主体作用。
第三环节:练习应用,巩固提高。
课后练习和一些变式的习题。
紧扣教学内容和教学环节,设计多种形式的数学练习,满足不同层次学生的求知欲,体现因材施教的原则,为学生提供创造性思维的空间。
第四环节:联系生活,深化应用。
让学生做应用题。
这一环节的设计,让学生感受到数学与生活的密切联系,用学到的知识与解决实际问题,促进理论同实践的结合。
作业:
自编一道有关平行四边形面积的应用题。富有实践性和应用性,鼓励学生利用数学知识解决生活中的实际问题。
总结:
总结内容主要让学生清楚:要求平行四边形的面积,必须知道它的底和高或量出底和高。
板书设计:
平行四边形教案 篇七
一、内容和内容解析内容:
本课是人教版新课标实验教科书八上第十九章的第一课时,其主要内容是平行四边形的概念及平行四边形的边、角的相关性质。
内容解析:
四边形是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。平行四边形是特殊的四边形,较一般四边形而言,它与我们的关系更为密切,这不仅表现在日常生活中有众多的平行四边形图案,更重要的是,它的性质在日常生活及生产实践等各个领域中均有广泛的应用。此外,平行四边形的相关知识在建筑学、物理学、测绘学中也有较为重要的应用。
平行四边形是一个四边形,但与一般四边形相比,它的对边分别平行。由这一本质特征,教材给出了定义:两组对边分别平行的四边形叫做平行四边形。这一定义既给出了平行四边形的一种判断方法:两组对边分别平行的四边形是平行四边形。也给出了平行四边形的一条性质:平行四边形的对边平行。这为判定一个四边形是平行四边形提供了重要的理论依据,也为证明两直线平行提供了新的方法。
平行四边形从属于四边形,所以一般四边形所具有的性质它都具有,如:内角和是360°、外角和为360°、四边形的不稳定性等。同时,它还具有自己特有的性质:对边平行且相等、对角相等、邻角互补等。这些性质为学生证明或解决线段相等、角相等等问题提供了全新的思路,拓展了学生的视野。另外,平行四边形的这些性质还是所有特殊平行四边形的基本性质。本节课既是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础。
在教材的编写上,本课还注意了使学生经历充分地观察、猜想、验证、推理、交流、应用等数学活动后获得结论,这对于培养学生的观察能力、推理能力、图形处理能力、探索及解决问题的能力等方面,都起着较为重要的作用。
教学重点:平行四边形的性质的探究与应用
二、目标和目标解析
目标:理解并掌握平行四边形的概念和性质,能运用平行四边形的概念及性质解决相关问题。
目标解析:
1、经历从现实情景中抽象出平行四边形的过程,发展学生的形象思维与抽象思维。2、经历观察、实验、猜想、验证、推理、应用等数学活动,培养学生的观察能力、概括能力和演绎推理能力,渗透转化思想。
3、通过性质的应用,培养学生独立思考的习惯,发展合作交流与应用意识,感悟数学与实际生活的密切联系。4、通过一系列探究活动的开展,使学生从中体验数学活动的探索性和创造性,感受探究成功的乐趣,从而激发学习兴趣。
三、教学问题诊断分析
平行四边形的定义,学生在小学已经学过,但受当时学生文化基础与认知水平的限制,他们对平行四边形的认识还比较肤浅,对概念本质属性的理解与把握还不够深刻与透彻。作为本节课的核心概念,教学中切忌把平行四边形概念当学生已学知识,简单复习巩固后,一带而过。而应精心设计教学活动,使学生在原有知识的基础上,加深理解、全方位把握。尤其对于定义的双重性,应引导学生细致剖析,使他们理解、让他们会用。另外,考虑到学生以前对一般四边形与特殊四边形的认识是割裂开来的,他们对两者从属关系的认识较为淡漠,学习定义之前,教师应先让学生明晰一般四边形与特殊四边形的联系与区别,这样既可突出概念本质,也可为性质的学习作好铺垫。
对于性质,从教材的呈现方式看,编者力图以问题为线索,通过观察──猜想──验证──推理证明等一系列数学活动,以自主探索、小组合作探究的方式让学生主动获得。如何真实的反应教材本意,突出性质的探索过程?如何彻底将学生的被动接受转为主动发现?这是执教者必须深思的问题。八年级的学生,已具备了一定的观察、分析、动手操作、语言表达及逻辑推理能力,若直接让学生观察图形──提出猜想──简单度量──推理论证──给出结论,这样难免有穿新鞋走老路之嫌,同时,也很难提高学生的学习积极性。尤其是对于性质的证明,在仅有平行四边形的前提下,如何解决线段相等、角相等这一推证难点也将因教学方式的生硬而变得更加难以逾越,教学效果可想而知。
要切实解决这个问题,教师应通过充分的活动让学生真正“动”起来。我思考了这样的处理:将整个性质的探究分两步走,第一步先引导学生通过观察大胆“猜一猜”,再“画一画”,进一步感受图形特征,接着“量一量”,初步验证猜想。第二步激发学生“剪一剪”,引导他们以小组合作的方式进一步探究。将所画的平行四边形沿其中一条对角线剪开,学生将不难发现所得到的两三角形全等,而全等三角形的对应边相等、对应角相等,这样很自然地进一步验证了猜想,与此同时,通过引导,学生还将发现,连接一条对角线,平行四边形的问题便转化成了全等三角形的问题。这样,一石二鸟,既让学生品尝了探究成功之乐,也为性质的推理论证扫清了障碍,轻松突破难点。若学生基础较好,还可考虑直接提供学具袋(里面提供可采用度量、平移、旋转、折叠、拼图等方法的相应学具),然后完全放手让学生去自主探索。鼓励学生探究方式、结果、表示方式及学习方式的多样化。相信在老师的精心组织、合作与参与下,学生将会从多个方面完善对平行四边形性质的认识。
教学难点:平行四边形性质的探究与证明。
四、教学支持条件分析
⑴借助一般四边形、平行四边形、梯形等模型,明晰一般四边形与特殊四边形的区别与联系,深化对概念本质的认识,也可为性质的探究服务。⑵借助多媒体课件,使实例背景更形象、更逼真,以此激发学生的学习兴趣。借助Flash动画,从激励学生探究入手,改进问题的呈现方式,使教学更富有趣味性、生动性和互动性,从而激发学生的主动参与热情,为更好的实现教学目标服务。
五、教学过程设计
(一)情景激趣:
1、出示一般四边形模型,随后出示平行四边形模型,感受“特殊四边形”与“一般四边形”的区别与联系。设计意图:谈话式开场,清新自然。让学生明晰平行四边形与一般四边形从属关系的同时,轻松切入主题。
2、你能举出生活中平行四边形的实例吗?
3、媒体展示:原野鸟瞰、中银大厦外景、篱笆、电动门、艺术装饰物等图片,引导学生从图片中找出平行四边形。──生活中的平行四边形随处可见,它装点着我们的生活,服务着我们的生活。由此导出课题。
设计意图:先由学生举实例,再选取生活中平行四边形的一组精美图片由媒体集中展示,让学生感悟数学与生活紧密联系的同时,也让他们更真切地感受到学近平行四边形的必要。另外,通过对图形的捕捉与提炼,培养学生的形象思维与抽象思维能力。
(二)探究在线:
1.定义探究:
①结合平行四边形的模型提问:平行四边形的“平行”体现在哪里?
②师生共议,归纳定义。
定义:有两组对边分别平行的四边形叫做平行四边形。
结合媒体动画演示,学平行四边形的表示法、读法及对边、对角、邻边、邻角等概念。
设计意图:突出概念本质,深化对定义的理解。将对边、对角等概念由媒体形象生动的展示,可使枯燥的概念更加灵动,让学生自觉地进入到对定义的深入探究中来。
③出示梯形模型,巩固定义(两组对边分别平行).
④图形及符号语言:
设计意图:多角度的表述,使学生能全面、透彻的理解定义。同时,规范了推理格式、提升了概括能力。
2.性质探究:
①平行四边形除了两组对边分别平行外,还有没有其它性质呢?
探究:(媒体播放,分步出示)
猜一猜:边之间?角之间?
画一画:在格点纸上画一个平行四边形。量一量:度量一下,与你的猜想一致吗?
剪一剪:将所画的平行四边形沿其中一条对角线剪开,现在,你有新的办法进一步验证猜想吗?
②结论:边:对边平行、对边相等;角:对角相等、邻角互补
设计意图:以学生原有知识为出发点,引导学生通过观察、猜想、动手实践、合作交流等方式主动获取知识,获得解决问题的方法。同时,在学生亲历知识的发生、发展与形成过程中使学生获得富有成效的学习体验,发展探究与合作意识,培养逻辑思维能力。另外,通过“剪一剪”,学生进一步验证猜想的。同时还找到了将四边形问题转化为三角形问题的有效途径,为性质的证明扫清了障碍。这样既渗透了转化思想,又巧妙的突破了难点。
③你能证明“平行四边形的对边相等,平行四边形的对角相等”吗?
师生共议,写出已知、求证及证明过程。已知:如图,四边形ABCD为平行四边形。
求证:AB=CD,AD=BC;∠A=∠C,∠B=∠D.
分析:连结对角线将平行四边形的问题通过转化为全等三角形的问题进行解决。
设计意图:注重直观操作与逻辑推理的有机结合,把几何论证作为探究活动的自然延续和必然发展。同时,通过证明,验证了猜想的正确性,让学生感受到数学结论的确定性和证明的必要性。
④总结:性质1:平行四边形的对边相等。
符号语言: ∵四边形ABCD为平行四边形
∴AB=CD,AD=BC.
性质2:平行四边形的对角相等。
符号语言: ∵四边形ABCD为平行四边形
∴∠A=∠C,∠B=∠D.
师生共议:以上性质为证明(解决)线段相等,角相等,提供了新的理论依据。
设计意图:对平行四边形性质的归纳,是学生对平行四边形特征的更深入认识,也是知识的一次升华,突出了教学重点。
(三)厉兵秣马:
小试身手:(媒体播放)如图,在□ABCD中,根据已知你能得到哪些结论?为什么?
设计意图:尝试对性质的应用,实现从知识到能力的顺利过渡。同时,开放式的问题,利于学生多角度的思考并解决问题。
例题探究:如图,小明用一根36m长的绳子围成了一个平行四边形的场地,其中AB边长为8m,其他三条边的长各是多少?(媒体播放)
随机应变:
(1)在□ABCD中,已知AC=12,ΔABC的周长=30,则□ABCD的周长=
(2)若∠DCE=38°,则□ABCD的四个内角的度数分别为:
(3)若最大的两个角之和为220°,则平行四边形的四个角的度数分别为:
设计意图:通过对例题的学习,加深对平行四边形性质的理解,培养学生的应用意识。通过一题多变,使学生能多角度、多层次、灵活的运用所学知识解决问题,培养学生思维的深刻性与灵活性。
智启百宝箱:
辨一辨:谁的测量肯定有误?
贝贝、晶晶、妮妮、号号四位同学正在测量
ABCD.
贝贝测量的结果:AB=CD=5,BC=AD=8;
晶晶测量的结果:∠A=∠C=40°,∠B=∠D=130°;
妮妮测量的结果:AB//CD,BC//AD;
号号测量的结果:∠A﹕∠B﹕∠C﹕∠D=2﹕6﹕2﹕7.想一想:如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形,线段AD和BC的长度有什么关系?
证一证:如图,在□ABCD中,E、F分别为边AB、CD上的点,连接DE、BF.
(1)如果E、F分别为AB、CD边上的中点,求证:∠ADE=∠CBF
(2)如果DE//BF,上述结论还成立吗?
设计意图:练习是学生心智技能和动作技能形成的基本途径,精心设计的练习将会使这一功用得到更充分的体现。以上这组练习层层递进、由浅入深,有效地促进学生对本节课所学习的概念与性质进行更加深刻的理解与掌握。另外,以游戏为载体,使问题的呈现方式更加生动活泼与富有挑战性,促使学生能更加主动的投入到知识的巩固与能力的提升中来。
(四)整理反思:
师生共议:通过这节课的学习,你对平行四边形有哪些新的认识?
我的收获(媒体播放):
①平行四边形的定义、性质。
②方法:证明平行、线段相等、角相等的新方法。
③转化思想:
设计意图:这是一次知识与情感的交流,浓缩知识要点、突出内容本质、渗透思想方法。培养学生自我反馈、自主评价的意识,促进学生可持续地、和谐地发展。
(五)快乐套餐:
必做:P90T
1、2.P91 T
6、7
选做:
文物保护部门需复原一如图形状的等腰三角形木格子,里面每一同方向木条相互平行且将腰分成相等的六段,已知等腰三角形的腰是30cm,底边长50cm,你能算出拼这个木格子所需木条的总长度吗?(接头不计) (聪明的同学们,你们能想出几种方法呢?)
(1)如果里面的每一同方向木条都不均匀排列,但互相平行,你还能算出所需木条的总长度吗?(接头不计)
(2)如果这个木格子底边上有n个不规则排列的点,你还能算出所需木条的总长度吗?(接头不计)
设计意图:“套餐”分两类,必做题面向全体、巩固所学,力图让“人人都获得必需的数学”。选做题力图“让不同的人在数学上得到不同的发展”,本题既可直接运用今天所学的定义与性质求解;亦可通过构造与此模型全等的图形,将两个全等的图形拼合成一个平行四边形,进而简捷求解;还可以借助“过等腰三角形底边上任一点向两腰作平行线,所得的平行四边形两邻边之和等于一腰长。”这一模型轻松求解等等。这是本课内容的一次拓展与升华。
三人行,必有我师焉。快回答为大家整理的7篇平行四边形教案到这里就结束了,希望可以帮助您更好的写作平行四边形。