1. 主页 > 知识大全 >

小学五年级数学《循环小数》教案最新4篇

作为一位不辞辛劳的人民教师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么应当如何写教案呢?为了帮助大家更好的写作循环小数,快回答整理分享了4篇小学五年级数学《循环小数》教案。

循环小数 篇一

洛社镇花渡小学马伟骏

【教学内容】

九年制义务教学六年级小学数学教科书(苏教版)第九册第48~49页。

【教材简析】

是学生教难准确地理解和表述的一个概念,特别是在表述其意义的一些抽象说法,学生难以理解。教材通过除法的实例,引导学生观察比较,使学生掌握的特征,理解的意义,在此基础上,认识循环节、纯和混,并学习的简便写法。

【教学过程】

一、做好铺垫

1、拍节奏游戏

师:(板书:︱︱这个节拍你们能拍出来吗?

(学生一起齐拍掌,中断后提问)

师:你们的节奏为什么这么整齐呢?

生:我们全班同学都是按照先拍一下,后拍两下,这样相同的节奏拍的。

师:如果老师让你们按照这样的节奏,不断重复地一直拍下去,不叫停止,

想一想,你们要拍多少次?

生:要拍很多很多次。

生:要拍无数次。

师:象这样拍的次数是“有限的”还是“无限的”?

生:是无限的。

师:你们刚才拍的次数呢?

生::是有限的。

【用游戏的方法导入新课,一是直观,二是引人入胜,使学生一下子便进入学习的境地。另外,已使学生初步感知“循环”、“无限”等概念】

2、找规律,猜图形。

运用抽拉教具,一次出现两个圆和一个三角形的图形。

⑴ 当逐个出现至第七个图形,即第三组的第一个圆圈后,提问:

师:谁能猜到下面一个是什么图形吗?

生:下面一个图形是“○”。

师:你是怎样想出来的的呢?

生:因为这幅图形的排列顺序是有规律的,每组都有三个图形,前面两个是圆,后面一个是三角,而且是按照这样的规律重复地出项的,所以这个图形应该是第三组的第二个图形,当然是“圆形”。

师:×同学回答得非常好。

(教师接着演示,让学生猜出图形)

⑵ 出示完第12个图形,当学生猜出下面一个是“圆”时,出现了“……”。

师:这个省略号表示什么意思?

生:表示后面有很多组前面两个圆,后面一个三角,这样的图形。

师:对的。也就是说,这幅图形是依次不断地重复出现这样的图形。请同学们想一想,这幅图形中有多少组这样的图象呢?

生:很多组,无数组。

(板书:依次不断地重复出现、无限)

【采用从直观到半抽象的方法去认识新的概念,遵循了儿童的认知规律。这一环节的设计,有利于培养学生推理性逻辑思维能力。】

二、进行新课

1、组织学生用竖式计算一道题(出示32÷6),并引导学生注意观察商有什么

特点?

生:我发现这道除法题除不尽,商总是重复出现“3”。

师:为什么会重复出现“3”呢?

生:因为余数重复出现“2”了,所以……。

师:这么说,32÷6的商里有多少个“3”呢?

生:有无数个“3”。

师:既然是有无数个,可以怎样表示呢?

生:我认为可以用省略号表示无数个“3”。

(板书:32÷3=5.33 ……)

2、出示2.7÷11,让学生除到商是五位小数时停笔。

师:想一想,如果继续除下去,商会怎样?

生:商里会依次不断地重复出现“4”和“5”。

师:你是怎么想出来的呢?

生:因为余数重复出现“5”和“6”,所以商就会重复出现“4”和“5”。

师:是不是这样的情况呢?继续除除看。

师:谁能说出这道题的商。

生:2.7÷11等于0.24545等等。

师:“等等”用什么符号表示?能不能不写省略号?为什么?

生:不能不写省略号。因为只有写上省略号,才能表示商后面还有很多45。

师:(出示下面一组题)能说出省略号表示的意思吗?

2÷9=0.222 ……

5÷12=0.4166 ……

9÷55=0.16363 ……

【让学生在尝试练习中认识,引导学生发现当两个数相除出现时商和余数的规律。这就重视了让学生掌握知识形成)快回答○www.kuaihuida.com(的过程,有利于学生今后的再学习。】

3、概括。

师:象这些小数,就是我们今天要学习的(板书课题)。谁能说一说什么叫?

生:一个小数,几个数字重复出现。

生:一个小数,几个数字依次不断地重复出现。

生:一个小数,从某一位起,一个数字或几个数字依次不断地重复出现。

【注:画横线部分,是教师逐步板书内容】

师:你们认为哪些同学说的最好?最请同学们看看书上写的与×同学刚才说的还有什么不同?

生:书上多了“小数部分”这几个字。

师:书上为什么要强调从“小数部分”的某一位起呢?

生:这就是说是从“小数部分”而不是从整数部分的某一位起,一个数字或者几个数字依次不段地重复出现。

4、判断。

师:请同学们判断下面哪几个数是?为什么?(小黑板出示)

0.999 ……

5.02727 ……

6.416416 ……

3.21212121

3.1415926 ……

0.547745 ……

学生判断后,教师组织讨论。

⑴ 师:3.21212121师吗?

生:不是。

师:小数部分的“21”这两个数字不是依次重复出现三次吗?为什么不是呢?

生:虽然“21”重复地出现了三次,但没有“不断地”重复出现,所以它不是,它是有限小数。

⑵ 师:3.1415926 ……是无限小数吗?

生:是。

师:是吗?为什么?

生:因为小数部分没有出现一个或几个相同的数字,所以……。

⑶ 师:在0.547745 ……这个小数中,“5”、“4”、“7”这三个数字已重复出现两次,它是不是呢?为什么?

生:虽然“5”、“4”、“7”这三个数字重复地出现,但没有依次地重复出现,所以它也不是。

【结合实例,帮助学生理解的意义,加深学生认识。这种抽象的文字概念,学生并不能靠读几遍就理解的,要联系实际,逐字逐句地讨论它的意义。】

㈡ 循环节

师:(指板)“5.333 ……”中不断重复出现的数字是哪一个?(3)

在“0.24545 ……”中依次不断出现的数字是哪几个?”(4、5)在中依次不断重复出现的数字有个名字:我们把它叫做循环节。

师:想一想,什么叫做循环节呢?请你找出以上判断题中的循环节。(教师指数,学生回答)

(当教师指第⑷小题时)

生:这个数的循环节是“21”。

师:对吗?

生:不对,因为这个数不是,所以它没有循环节。

师:对的,循环节只有在里才出现,如果不是也就没有循环节。

㈢ 的简便记法

1、讲解。

师:一般的写法是把循环节写出两边或者三遍,然后写上省略号。

不过这样写比较麻烦,简便写法是只写出一个循环节,然后在循环节的首位和末位数字上各记一个小圆点,这个点叫做循环点。例如:0.245。读作:零点二四五,四五循环。

2、练习。

⑴ 写出 5.33 ……的简便写法。

⑵ 写出判断题中的简便写法

㈣ 纯和混

1、引导

师:比较一下:“3.67”和“3.267”这两个的循环节的位置有什么不

同?

生:“3.67”的循环节是从小数部分的第一位就开始的;而“3.267”的循环节不是从小数部分第一位开始的。

师:这是两种不同的,我们给它们分别起上名字,请看课本

循环小数 篇二

课题五:循环小数(a)

教学内容

教科书第27~28页的例7~9和“做一做”中的题目,练习七的第1~3题。

教学目的

1.使学生初步理解循环小数的概念,会用近似值表示除法中是循环小数的商。

2.使学生知道有限小数和无限小数的区别。

教学过程

一、新课

1.教学例7.

教师出示例7,让学生独立计算,提出下列问题让学生思考:

(1)这道题能不能除尽?

(2)商的小数部分和余数有什么规律和特点?

(3)这样的商如何表示?

当学生发现商的小数部分总是不断地出现3,而且总也除不尽,教师引导学生思考第2个问题,使学生发现:因为余数总是重复出现1,所以商就重复出现3,总也除不尽。教师指出:这样的除法算出的商应该表示为(板书):

10÷3=3.33……

2.教学例8.

教师出示例8,要求学生计算到商的第三位小数。

当学生算到商的第三位小数时,让学生停下来,看一看余数是多少?接着再除出两位小数,并提出下列问题供学生思考:

(1)已经算出的商的最后两位小数和余数同它前面的两位小数和余数有什么关系?

(2)如果继续除下去,商会怎样?

(3)这样的商如何表示?

让学生观察和比较计算的过程,引导学生发现余数重复出现3和8,继续除下去商就会重复出现2和7,总也除不尽。教师把商写出来:

58.6÷11=5.32727……

并说明2和7分别出现两次,如果继续除下去,会不断地重复出现,就可用省略号表示。

教师:例7和例8所得到的商是一种比较特殊的小数。(教师指着黑板上的板书)例7的商从小数部分第一位开始不断重复出现数3,写出3.33…….例8的商从小数部分的第二位开始不断地依次重复出现2和7,写成5.32727…….使大家看到,一个小数,从小数部分的某一位起,一个数字(指着例7商中的数字3)或者几个数字(指着例8商中的数字2和7)依次不断地重复出现,这样的小数叫做循环小数。

教师让学生默读教科书第118页下面循环小数的概念,并让学生思考循环小数的特点是什么?教师引导学生总结出循环小数的特点:

(1)重复出现的数字是接连依次不断的;

(2)小数的位数有无限多;

(3)用省略号来表示无限多的小数位数。

教师出示题目:1.332÷4,这道题的商是不是循环小数?为什么?(1.332÷4=0.333,这个商中虽然小数部分有重复出现的数字3,但是小数位数是有限的,所以它不是循环小数。)

教师:循环小数还有比较简便的表示法,板书:

3.33……写成3.

5.32727……写作5.3

其中是“33……”的简便表示法,是“2727……”的简便表示法。

教师:今后做小数除法时,如果遇到除不尽的情况,可以根据要求取商的近似值,也可以用循环小数表示除得的商。在一般情况下,遇到除不尽的情况通常保留一位、两位或三位小数。商是循环小数的也可以根据需要取它的近似值。例如,例8的商,可以保留两位小数,也可以保留三位小数。板书:

保留两位小数,商的近似值为5.33

保留三位小数,商的近似值为5.327

3.做第28页例9前“做一做”中的题目。

除了题目中的要求以外,还要将每个循环小数分别取保留两位和三位小数的近似值。做完后,集体订正。

4.教学例9.

教师出示例9,让学生审题后独立计算,集体订正时,让学生说一说循环小数取近似值的方法。

5.做第28页中间“做一做”中的题目。

让学生独立做题。集体订正时,让学生说一说循环小数取近似值的方法。

6.教学有限小数和无限小数的概念。

教师让学生做下列题目:

(1)15÷16     (2)1.5÷7

对于第(2)题要尽可能地多除几位小数。

做完后,让学生说一说两道题所得的商有什么特点?(第(1)题能除得尽,第(2)题除不尽,商是循环小数。)

教师:从第(1)、(2)题可以看出:两个数相除,如果不能得到整数商,会有两种情况。

第一种情况:除到小数部分的某一位时,不再有余数,商里的小数部分的位数是有限的,也就是被除数能够被除数除尽。例如,第(1)题的商就是属于这种情况。

第二种情况:除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的。例如,第(2)题的商就是属于这种情况。

小数部分的位数是有限的小数,叫做有限小数;小数部分的位数是无限的小数,叫做无限小数。循环小数是无限小数。

7.做第29页最上面的“做一做”中的题目。

教师让学生计算后,判断哪道题的商是有限小数或无限小数。

二、巩固练习

1.做练习七的第1题。

教师让学生独立计算后,再进行判断。集体订正时,教师要求学生说出怎样根据循环小数的概念来判断哪些商是循环小数。

2.做练习七的第2题。

让学生直接将得数写在题后。做完后,集体订正。

3.做练习七的第3题中第一行3道小题。

让学生独立做题,做完后,集体订正。

三、布置作业

教师说明这节课的概念多,复习时先要阅读第27和第28页上的内容,然后做练习七第3题中第二行的3道小题。

小学五年级数学《循环小数》教案 篇三

一、创设情境,激发学习兴趣,引入复习主题

1、故事导入:

(今天老师给同学们带来了一个很精彩的故事,同学们愿意听听吗?)在听故事之前,老师有一个要求:听老师讲之后看你能从这个故事中发现什么规律?

师:从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说。从前有座山,山上有座庙,庙里有个老和尚,老和尚对小和尚说……

师:你从这个故事中发现了什么规律?(这个故事总是在依次不断地重复同一个内容。)

师:不错,大家已经发现这个故事的一个特点了。板书:依次不断地重复

师:谁能根据这个特点接着老师的故事继续往下讲?(让几个学生继续讲这个重复的故事。)

(引导学生讨论后回答:讲不完。)

师:如果老师让你们照这样不断重复地一直讲下去,不叫停止,想一想,你们要讲多少遍?(引导学生讨论后回答:循环、无限。)

生:要讲很多很多遍。

生:要讲无数遍。

师:像这样讲的遍数是“有限的”还是“无限的”?

生:是无限的。

师:你们刚才讲的遍数呢?

生:是有限的。

2、举实例,引入主题

(其实在日常生活中,也有许多类似的现象。)

师:在生活中你们遇到过这样依次不断重复出现的循环现象吗?谁能举例说一说?

(1)、一年四季春夏秋冬的循环。

(2)、白天与黑夜的循环。

(3)、周一至周日的循环。

(4)、1月到12月的循环。

(5)、钟表从1走到12的循环。

师:同学们知道的可真不少,其实在数学中也存在着这样有趣的现象。在数学王国里,就有这么一位特殊的小数朋友——循环小数。(板书课题)这就是今天我们要学习的内容。下面,就让我们再次一起走进知识的海洋——循环小数。

二、用竖式计算下面各题。

0.75÷2.5= 28÷18=

78.6÷11= 1.5÷7=

1、个别演版

2、讲评,统计作对人数。问个别学生计算错在哪里?(目的:学生要养成认真计算的好习惯,做题是这样,做任何事情都是这样。)

3、观察你的计算过程和计算结果,你有什么想对同学和老师说的吗?(小组讨论,个别发言)

同学们说的真不错!接下来就请同学们用自己刚才的小发现来完成下面的判断题。

三、判断对错。(对的在括号里打√ ,错的在括号里打×)

(1)、一个小数,从某一位起,一个数字或几个数字重复出现,这样的小数叫循环小数。 ( )

(2)、9.66666是循环小数。 ( )

(3)、循环小数是无限小数, 无限小数也是循环小数 。 ( )

(4)、循环小数8.3742742…也可以写成8.3742。 ( )

(5)、7.80=7.8 ( )

讲评:(1)、强调重点字词。

(2)、是5位小数,是有限小数,不是循环小数。

(3)、前半句对,后半句不对,无限小数不但包含循环小数,还包含无限不循环小数。这句话如何说正确?在本册书的学习中,还有哪两个数学概念的关系也是这样的?

(4)、让学生明确循环小数有两种表示方法。一种是一般写法,一种是简便写法。

(5)、个别学生上台展示自己比大小的方法:先写成一般形式,再比大小。

你的方法真不错,那就让我们利用这位同学的方法完成下面的练习。

四、比大小

1、 0.33 0.3 1.23 1.233 1.45 1.45

2、 从大到小排列

0.6 0.6 0.606 0.60… 0.06

(1)、学生独立完成。

(2)、个别演版,把自己比的方法展示出来。

(3)、统计做对的人数,个别说说自己的错因。

提醒学生注意: 要看清题目要求是从大到小,还是从小到大。

要用“>”连起来。

比的结果里要写题目里给的原数。

五、全课小结

同学们,通过我们刚才的思、说和做,解决了许多问题,那就让我们来互相说说这一节课学习的感受吧!

生:我知道小数按照小数部分的位数可以分为有限小数和无限小数,循环小数是无限小数的一种。

生:我知道循环小数就是数字在一个小数的小数部分有规律的无限的重复。

生:我们在写一个循环小数时,虽然在小数部分只写了几个数字,但是后面的省略号表示这是千军万马,浩浩荡荡的。

生:我感觉循环小数是一望无际的。

生:我觉得循环小数的简记的方法最神奇,小数部分头上的小圆点最神奇了,好象孙悟空头上的毫毛,拔下来立刻变成无数个数字

同学们的表述太精彩了!接下来,让我们放松一下:请欣赏美丽的图案。

师:这些图案都是利用循环小数这一现象设计出来的。你能利用今天学习循环小数的现象也设计一种好看的花边

吗?

六、布置作业:

你能利用今天学习循环小数的现象设计一种花边?

《循环小数》数学教案 篇四

教学目标

1.理解和掌握循环小数的概念.

2.掌握循环小数的计算方法.

教学重点

理解和掌握循环小数等概念.

教学难点

理解和掌握循环小数等概念.

教学过程

一、铺垫孕伏

(一)口算

0.8times;0.5= 4times;0.25= 1.6+0.38=

0.15divide;0.5= 1-0.75= 0.48+0.03=

(二)计算

21divide;3= 15divide;3= 12divide;3= 10divide;3=

教师提问:通过计算,你发现了什么?

二、探究新知

(一)教学例7

例7 10divide;3

1.列竖式计算

教师提问:你发现了什么?为什么?(教师用两种颜色的笔分别将商3和余数1描一遍)

使学生明确:因为余数重复出现1,所以商就重复出现3,总也除不尽.

所以10divide;3=3.33……

(二)教学例 8

例8 计算58.6divide;11

1.学生独立计算

2.因为余数重复出现数字3和8,所以商就重复出现数字2和7,

所以58.6divide;11=5.32727……

3.观察比较 10divide;3=3.33…… 58.6divide;11=5.32727……

教师提问:你有什么发现?

(小数部分有的数字重复出现;有一个数字、有两个数字重复出现;)

4.一个小数,从小数部分的某一位起,一个数字或者几个数字依次不断地重复出现,这样的小数叫做循环小数.

教师板书:循环小数.像3.33……和5.32727……是循环小数.

5.简便写法

3.33……可以写作 ;

5.32727……可以写作

6.练习

把下面各数中的循环小数用括起来

1.5353…… 0.19292…… 8.4666……

(三)教学例9

例9 一辆汽车的油箱里原来有130千克汽油,行驶一段路程以后用去了 .大约用去了多少千克汽油?(保留两位小数)

1.学生独立列式计算

130divide;6=21.666……

asymp;21.67(十克)

答:小汽车大约装21.67千克汽油.

2.集体订正

重点强调:保留两位小数,只要除到小数点后第三位即可.

3.练习

计算下面各题,除不尽的先用循环小数表示所得的商,再保留两位小数写出它的近似值.

28divide;18 2.29divide;1.1 153divide;7.2

(四)讨论:两个数相除,如果不能得到整数商,会有几种情况出现?

1.除到小数部分的某一位时,不再有余数,商里小数部分的位数是有限的.也就是被除数能够被除数除尽.如3divide;2=1.5.小数部分的位数是有限的小数,叫做有限小数.

2.除到小数部分后,余数重复出现,商也不断重复出现,商里小数部分的位数是无限的.如10divide;3=3.33……,小数部分的位数是无限的小数,叫做无限小数,循环小数是无限小数.

三、课堂练习

(一)计算下面各题,哪些商是循环小数?

5.7divide;9 14.2divide;11 5divide;8 10divide;7

(二)下面的循环小数,各保留三位小数写出它们的近似值.

1.29090…… 0.0183838……

0.4444…… 7.275275……

四、布置作业

(一)计算下面各题,除不尽的用循环小数表示商,再保留两位小数写出它们的近似值.

9.4divide;6 38.2divide;2.7 204divide;6.6 6.64divide;3.3

(二)一列火车从南京到上海运行305千米,用了3.5小时,平均每小时行多少千米?(保留两位小数)

汉屈群策,策屈群力。以上这4篇小学五年级数学《循环小数》教案是来自于快回答的循环小数的相关范文,希望能有给予您一定的启发。