1. 主页 > 知识大全 >

抛物线性质 抛物线

抛物线性质:1.焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标;2.|AB|=cos2(x2=2py(p>0))(通径是最短的焦点弦)。为了加深您对于抛物线的性质的认知,下面高考家长网给大家整理了《抛物线性质 抛物线》,欢迎您的阅读与参考。

抛物线性质

1、焦半径公式:(y2=2px(p>0))|MF|=2x0M(x0,y0)为抛物线上任意一点的坐标

2、通径|AB|=2p

3、焦点弦

(1)、|AB|=p+x1+x2

(2)、|AB|=2psin2θ2pP(y2=2px(p>0))

(3)、|AB|=cos2θ(x2=2py(p>0))(通径是最短的焦点弦)

(4)、焦点弦的端点坐标A(x1,y1),B(x2,y2),则有x1x2=,y1y2=-p24p2

(5)、n=1+cosθ,m=1−cosθm+n=p

抛物线

平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。其中定点叫抛物线的焦点,定直线叫抛物线的准线。

抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。 它在几何光学和力学中有重要的用处。 抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而得的曲线。抛物线在合适的坐标变换下,也可看成二次函数图像。

上面的《抛物线性质 抛物线》是由高考家长网精心整理的抛物线的性质相关信息,感谢您的阅读与参考。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。