1. 主页 > 高考复习 > 数学 >

函数有界和收敛的区别

收敛函数的x值有界,y值无界限。有界函数的y值有界,x值无界限。收敛函数:是有极限的函数。趋于无穷大(包括无穷小或无穷大),总是逼近某一值,称为函数的收敛。有界函数:设(x)是区间E上的函数。若对于任意属于E的x,存在常数M>0,使得|(x)|M,则称(X)是区间E上的有界函数。下面是高考家长网给大家整理的《函数有界和收敛的区别》,希望可以帮助您更好的了解有界的相关信息。

收敛函数:若函数在定义域的每一点都收敛,则通常称函数是收敛的。函数在某点收敛,是指当自变量趋向这一点时,其函数值的极限就等于函数在该点的值。有界函数:对于定义域中的任意一个值,相应的函数值都在一个区间内变化,那函数就是有界的。

收敛函数一定有界(上下界分别就是函数的最大和最小值)但是有界函数不一定收敛,如f(x)在x=0处f(0)=2,在其他x处f(x)=1,那么f(x)在x=0处就不是收敛的,那么f(x)就不是收敛函数,但是f(x)是有界的,因为1≤f(x)≤2。

上面这《函数有界和收敛的区别》就是高考家长网为您整理的有界相关知识,希望可以给予您一定的参考价值。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。