1. 主页 > 高考复习 > 数学 >

平行四边形具有什么的特性容易变形 平行四边形性质

平行四边形特点是对边平行并且相等,对角相等,两邻角互补,两条对角线相互平分。平行四边形是属于中心对称图形,而它的中心就是对角线的交叉点,通过中心点的直线能够将平行四边形分成全等的两个图形。下面高考家长网为大家整理了《平行四边形具有什么的特性容易变形 平行四边形性质》,希望可以在平行四边形的特点方面帮助到您。

平行四边形具有的特性

①平行四边形两组对边分别平行;

②平行四边形的两组对边分别相等;

③平行四边形的两组对角分别相等;

④平行四边形的对角线互相平分。

此外,平行四边形还具有不稳定性,比较容易变形。

平行四边形性质

(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。

(简述为“平行四边形的两组对边分别相等”)

(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。

(简述为“平行四边形的两组对角分别相等”)

(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。

(简述为“平行四边形的邻角互补”)

(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)

(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。

(简述为“平行四边形的对角线互相平分”)

(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)

(7)平行四边形的面积等于底和高的积。(可视为矩形。)

(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。

(9)平行四边形是中心对称图形,对称中心是两对角线的交点.

(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。

(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。

(13)平行四边形对角线把平行四边形面积分成四等份。

(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。

(15)平行四边形的面积等于相邻两边与其夹角正弦的乘积。

高考家长网为大家整理的《平行四边形具有什么的特性容易变形 平行四边形性质》到这里就结束了,希望您读完之后,已经解决了平行四边形的特点方面的疑惑。