正交矩阵是指矩阵的转置和其逆矩阵相等的矩阵。在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。为了让您对于正交矩阵的了解的更为全面,下面高考家长网给大家分享了《正交矩阵定义和性质 正交矩阵的定理》,希望可以给予您一定的参考。
正交矩阵的性质
1、对于任意的两个向量x和y,都有x^Ty=0,即x和y是正交的。
2、对于任意的向量x,都有x^TAx=x^Tx,即矩阵A不会改变向量的长度。
3、矩阵A的行向量和列向量都是单位向量。
正交矩阵的定理
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
A的列向量组也是正交单位向量组。
正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
以上这篇《正交矩阵定义和性质 正交矩阵的定理》就是高考家长网小编为您分享的正交矩阵的相关知识,感谢您的查阅。