作为一名优秀的教育工作者,总归要编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。我们该怎么去写教案呢?下面是高考家长帮为小伙伴们整理的二年级下册数学平行四边形教案范文【优秀5篇】,希望能够对朋友们的写作有一点启发。
最新二年级下册数学平行四边形教案 篇一
教学内容:教材100-103页
教学目的:1、认识长方形,正方形的特征
2、会自己描述长方形、正方形的特征、
教具准备:小棒 长方形 正方形 三角板 直尺
教学过程:一、创色情景 引入新课
同学门,你们认识长方形和正方形吗《生活中那些物体是长方形和正方形?
学生找后口述
你是怎样辨认的?长方形和正方形有什么特征?我们今天旧来讨论
板书课题
二、动手 实践,自主探索
小组动手实践,研究长方形和正方形的特征
教师指导方法,用折一折 比一比 量一量的方法
跨组交流
三、合作交流
小组汇报交流结果
教师整理并板书
4条边 4个直角
长方形对边相等 正方形4条边相等
四、巩固拓展
课堂活动练习十四
课后记:
教学内容:103页——104页
教学目的:1、认识直角、锐角和钝角
2、会辨认直角、锐角和钝角
教学过程:一、创色情景,引入课题
1、出示:各种角,如红领巾 黑板 桌角等
问:你在生活中还见过什么角?
学生汇报
2、揭示课题
其实,在生活中,角到处可见,这节课我们一起来研究角
二、自主探索
出示例1
展示三个角
老师:观察角,你有什么发现?
学生观察,讨论,交流
学生汇报
组织研究
请用三角板比一比3个角,你有什么发现?
学生比较探后交流
教师板书:比直角小 比直角大
指导学生看书103-104
教师:通过看书你知道了什么?
学生回答
教师板书:锐角比直角小 钝角比直角大
三、巩固提高
你能用手臂比出大小不同的直角 锐角和钝角吗?
用纸折角
用小棒摆角
四、尝试画角
同学们能比,能折,能摆这3种角了,你会画吗?
学生画角
练习
课后记
平行四边形的认识教案 篇二
教学目标:
1、通过观察、讨论、测量、探索等数学活动,认识平行四边形的特征,了解其特性。
2、在探索平行四边形的特征的过程中,发展学生初步的空间观念。
3、在探索学习活动中,发展实践能力和创新意识,并学会与他人合作。
4、让学生通过亲身参与探索实践活动,去获得积极的情感体验和成功体验。
教学设想:
“自主探索发展学习”,旨在改变教与学的方式。教师的教是为学生的自主学习,主动探究创造条件,是让学生真正在探索学习中发展,因此,我设计“平行四边形的认识”这节课,对现行教材进行创造性处理,努力为学生创设一个广阔的活动空间,探索空间,让学生最大限度的参与探索平行四边形的特征的全过程,具体设计以下几个探索活动。
探索活动1:从各种各样的实物形体中找出平行四边形的实物,然后探索平行四边形的特征。
探索活动2:探索发现“平行四边形”的共同特点。让学生利用自己所带的材料借助自己的思维去发现这一共同特点,学生通过自己动脑思考,探索出多种发现的方法,有困难的,小组共同研究,共同探索。
探索活动3:探索发现平行四边形的特性活动,根据小学生好动、好玩、好奇的特点,设计了小组合作制作一个平行四边形的框架和三角形的框子,通过让学生动手拉发现二者的不同特性。
探索活动4:拼摆平行四边形,学生在拼平行四边形的小组活动中,合作竞赛,课堂气氛活跃,学生的创造性思维得到发展。
教学过程:
一、创设问题情境。
1、同学们把你找的周围四边形的物体,想大家做个汇报。
2、演示:出示以下图形
3、这些四边形有什么共同特点?
长方形
4、在这些四边形中我们已经研究过那几种图形?他们各有那些特征?他们之间有什么关系?
正方形
板书:
二、自主探索,合作交流。
1、以四个同学为一组,观察平行四边形的图形,探索平行四边形的共同特点。
(1)学生用自己喜欢的方法去探索平行四边形的特点。
(学生拿出准备好的平行四边形图用直尺、三角板、量角器等工具来测定)
(2)小组汇报,学生互相评价
汇报1:通过用三角板和直尺测出两组对边分别平行
汇报2:用直尺量两组对边分别相等
汇报3:用量角器和对比的方法,测出对角也相等。教师用事物演证这一特点。
2、认为什么样的图形叫平行四边形?
3、看书、质疑。
4、小组合作探索
平行四边形
平行四边形与长、正方形的关系
长方形
正方形
小组讨论,自己画出关系图
小组汇报、展示画的图形
5、小组合作探索平行四边形的特征。
(1)小组合作用自己制作的平行四边形和三角形,拉动后发现了什么?
(2)小组汇报实验结果
教师验证、板书:容易变形
三、实验应用,拓展创新。
1、说出日常生活中,那些地方利用了平行四边形易变形的特征?自己根据今天学的知识进行小发明、小创造。
2、用塑料拼板拼平行四边形
(分组合作拼摆,展示拼摆的结果)
四、评价体验。
1、评价本节课自己及其同学的表现。
2、学习“平行四边形的认识”这课后,可以帮助你解决那些平时遇到的问题。
五、教学反思:
本节课根据数学课程标准的基本理念,精心设计学生的数学活动,努力改善学生的学习方式,主要有以下特点:
1、设计活动,激发兴趣。教学过程中,注重选择富有儿童情趣的学习材料和活动内容,激发学习兴趣,获得愉快的数学学习体验。如在导入新课时,教师创设问题情境,让学生找周围的四边形物体,巧妙引导学生回顾前面学习的长方形、正方形,自然过渡到平行四边形的认识。在探索阶段,让学生在实践活动中,经历、体验数学知识的形成过程。在巩固拓展时,创始了让学生“辨、拼、说”的活动,课堂上学生始终乐此不疲,兴趣盎然。
2、独立思考,有效合作。本节课教学中,教师注重把思考贯穿教学的全过程,将实践与思考贯穿教学的全过程,让学生在观察实践交流中思考,尤其是特别注重为学生创设独立思考的时空。教学中,无论是学生“观察发现”,或是“探索创新”,或是“深化巩固”,或是“联系实际”,都先让学生独立思考,再进行小组合作或再组织讨论交流。这样学生有话可说,有话能说,充分发挥学生的积极性。
3、改善策略,创新思维。教学时有意识地为学生提供具有充分再创造的通道,激励了学生进行再创造的活动。第一,设计学生喜欢又富有挑战性的问题,激发学生主动思考和创造的欲望。教学时这样设问:“用自己喜欢的方法去探索平行四边形的特点。”学生经过积极、自主的思考、实践,创造了不少的方法。第二、提供材料,让学生在实践中进行“再创造”。课前教师为每组学生准备平行四边形和三角形,课中引导学生利用手中的材料“做数学”,在做中创新,在做中“再创造”。第三、为学生提供比较充足的探索与创造的空间,学生在数学活动中进行再创造,实现了真正的数学学习。
八年级数学教案:《平行四边形》 篇三
一、教学目标:
1.运用生活实例和实践操作认识平行四边形,发现平行四边形的基本特征。
2.学会用不同方法制作一个平行四边形,通过猜想验证发现平行四边形的特征。
3.在解决实际问题中感受图形与生活的联系,培养学生空间观念和动手实践能力。
教学重点:在制作中发现平行四边形的基本特征。
教学难点:引导学生发现平行四边形的特征。
二、教学过程:
(一)创设情境,设疑激趣
1.师:同学们每天都要经过校门进入校园,但是你们注意观察我们的校门了吗?从图片中你们能找到一些平面图形吗?
生:能
师:是什么平面图形,谁能上来指一指。
生:平行四边形
根据回答:教师板书:平行四边形
(二)引导探究,自主建构
师:同学们再看,这里面有没有平行四边形?(出示扩缩尺、升降机图片)
生:谁能上来指一指?
师:那同学们想一下什么样的图形是平行四边形呢?请看大屏幕
(大屏幕出示平行四边形定义:两组对边分别平行的四边形叫做平行四边形)
师:谁能找一下这句话里最重要的几个词,并解释一下?
生:四边形
师:什么样的图形是四边形?
生:由四条边围成的图形
师:还有哪几个词?
生:两组对边分别平行
师:你能上来一边用手指着一边给大家解释一下这句话吗?
生:能
师:除了两组对边分别平行,两组对边的长度有什么关系呢?拿出刚刚发给你的平行四边形,量一量四条边的长度,你发现了什么?
生:两组对边相等
师:平行四边形的两组对边平行且相等,那么平行四边形的对角有什么特点呢?继续拿出发给你的平行四边形,把两组对角像老师这样折一折,你发现了什么?
生:两组对角相等
师:刚才同学们说的都非常好,现在带着你的理解在研究单的方格纸上画一个平行四边形
生画图,师巡视指导。
研究单
在下面的方格纸上画一个平行四边形
师:(选几个学生画的平行四边形粘到黑板上)孩子们,画好了吗?
生:画好了
师:画好了,请看黑板,思考老师这样一个问题:为什么同学们画的平行四边形都不一样大呢?
随意生怎么说,只要表达出底和高的意思就行
师:介绍平行四边形的底和高
注:这个平行四边形的高学生画
注:老师画第二种情况
师:请同学们继续拿出研究单,完成研究二。不用写,能思考出答案就行
研究二:总结正方形、长方形和平行四边形的特征。
正方形
长方形
平行四边形
边
角
师:孩子们,现在小组交流一下你的想法
生生交流,师巡视指导
师:好了,小组交流到此结束,哪个小组愿意全班交流一下你们的想法。
生:......
师:同学们请继续看,老师这里有一个平行四边形框架,(来回拉动平行四边形),你发现平行四边形有什么性质?
生:具有不稳定性
师:(继续拉动平行四边形,拉成长方形),说明长方形和平行四边形是什么关系?
生:长方形是特殊的平行四边形。
师:同学们,我们已经学过正方形、长方形的关系,谁来说一说?
生:正方形是特殊的长方形(师出示长方形圈正方形的圈)
师:利用平行四边形的特征,如果把平行四边形也圈进来,应该怎样圈?
生:圈在最外面
(三)自主反思
通过本节课的学习,你收获了什么?
平行四边形教案 篇四
教学目标
1.使学生掌握平行四边形的意义及特征,了解其特性,能够正确画出底所对应的高.
2.通过观察、动手操作,培养学生抽象概括能力和初步的空间观念.
教学重点
掌握平行四边形的意义及特征.
教学难点
理解平行四边形与长方形、正方形的关系.
教学过程
一、复习准备.
我们已经学过一些几何图形,观察一下这些图形有什么共同特点?
在明确它们是由四条线段围成的基础上概括出:由四条线段围成的图形是四边形.
教师提问:我们学过哪些四边形呢?
学生举例.
说说哪些物体表面是平行四边形?
教师出示下图,让学生初步感知平行四边形.
二、学习新课.
1.理解平行四边形的意义.
首先出示一组图形.
教师提问:这些图形是什么形?它们有什么特征?
(1)看到这个名称你能想到什么?(板书:平行、四边形)
教师提问:你认为什么是四边形?你学过的什么图形是四边形的?
(2)动手测量.
指名到黑板上用三角板检验一下,每个图形的对边怎样.
(3)抽象概括.
根据你测量的结果,能说说什么叫平行四边形吗?
小组先讨论,再让到黑板上测量的同学说出检验与测量的结果,从而引出平行四边形的确切定义.(板书:两组对边分别平行的四边形叫做平行四边形.)
教师强调说明:只要四边形每组对边分别平行就能确定它的两组对边相等,因此平行四边形的定义是“两组对边分别平行的四边形”.
(4)反馈:判断下面图形哪些是平行四边形?【演示课件“平行四边形”,出示反馈练习】
2.平行四边形的特征和特性.
(1)教师演示.
教师拿一个长方形木框,用两手捏住长方形的两个对角,向相反方向拉.引导学生观察两组对边有什么变化?拉成了什么图形?什么没有变?
学生明确:两组对边边长没有变,变成了平行四边形,四个直角变成了锐角和钝角.
(2)动手操作.
学生自己动手,把准备好的长方形框拉成平行四边形,并测量两组对边是否还平行.
(3)归纳平行四边形特性.
根据刚才的实验、测量,引导学生概括出:平行四边形具有不稳定性.(板书:易变形)
(4)对比.
三角形具有稳定性,不容易变形.平行四边形与三角形不同,容易变形,也就是具有不稳定性.
这种不稳定性在实践中有广泛的应用.你能举出实际例子来吗?
(如汽车间的保护网,推拉门、放缩尺等.)
3.学习平行四形的底和高.
(1)认识平行四边形的底和高.
教师边演示边说明:从平行四边形一条边上的`一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高.这条对边叫做平行四边形的底.
(2)找出相应的底和高.【继续演示课件“平行四边形”】
引导学生观察:图中有几条高?它位相对应的底各是哪条线段?
使学生明确:从B点画高,它的底是CD;从D点画高,它的底是BC.
(3)画平行四边形的高.【继续演示课件“平行四边形”】
教师说明:平行四边形高的画法与三角形画高的方法基本相同,都用过直线外一点画已知直线的垂线的方法.从一条边上任意一点都可以向它的对边画高,但通常是从一个角的顶点向它的对边画高.这里高要画在平行四边形内,不要求把高画在底边的延长线上.
①教师利用长方形框,拉动长方形的边,使其变成不同的平行四边形.(还可以把平行四边形变成长方形)
引导学生比较长方形和平行四边形的异同点,使学生明确:
相同点是两组都分别平行,所以长方形也具有平行四边形的特征,也属于平行四边形.不同点是长方形的四个角都是直角,所以把长方形看作是特殊的平行四边形.
②引导学生比较正方形和平行四边形的相同点和不同点.
使学生明确:正方形也是两组对边分别平行,四个角也是直角,正方形也可看作是特殊的平行四边形.因为长方形和正方形都有两组对边分别平行,四个角是直角的共同点,而正方形还有四条边相等的这一特征,因此正方形可看作是特殊的长方形.
③这三种图形之间的关系可以用集合图来表示【继续演示课件“平行四边形”】
三、巩固练习.【继续演示课件“平行四边形”】
1.判断下列图形哪些是平行四边形?
2.指出平行四边形的底,并画出相应的高.
3.在钉子板上围出不同的平行四边形.
4.数一数下图中有( )个平行四边形.
四、教师小结.
1.提问:通过今天的学习,你都学会了什么?(平行四边形的意义,特征及特性)
2.组织学生对所学知识提出质疑,并解疑.
3.教师提问:我们已学过的长方形、正方形是平行四边形吗?它们有什么关系?(因为长、正方形也具备平行四边形的特点所以长、正方形是特殊的平行四边形)
五、布置作业.
1.用一套七巧板拼出不同的平行四边形.
2.在下面每个平行四边形中分别画出两条不同的高。
平行四边形教案 篇五
学习目标:
1、理解并掌握平行四边形的定义
2、掌握平行四边形的性质定理1及性质定理2
3、提高综合运用知识的能力
预习指导:
1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如________________ _____________________________ ______等,都是平行四边形。
2、____________________________________是平行四边形。
3、平行四边形的性质是:_________________________________________.
学习过程:
一、学习新知
1、平行四边形的定义
(1)定义:________________ ________________________叫做平行四边形。
(2)几何语言表述: ∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形
(3)定义的双重性: 具备_____ _____________的四边形,才是平行四边形,
反过来,平行四边形就一定具有性质。
(4)平行四边形的表示:平行四边形ABCD 记作_________,读作___________.
2、平行四边形的性质
平行四边形是一种特殊的`四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?
已知:如图 ABCD,
求证:AB=CD,CB=AD.
分析:要证AB=CD,CB=AD.我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_____ _____________,它将平行四边形分成_________和__________,我们只要证明这两个三角形全等即可得到结论.
证明:
总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。
在上题中你能证明∠B=∠D, ∠BAD=∠BCD吗?利用我们学过的方法试一试。
证明:
通过上面的证明,我们得到了:
平行四边形的性质定理1是_______________________________________.
平行四边形的性质定理2是_______________________________________.
二、应用举例:
例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的 度数。
例1、如图,在平行四边形ABC D中,AE=CF,求证:AF=CE.
例2、(1)在平行四边形ABCD中,∠A=500,求∠B、∠C、∠D的度数。
(2)在平行四边形ABCD中,∠A=∠B+400,求∠A的邻角的度数。
三、随堂练习
1.平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。
2、在平行四边形ABCD中,若∠A:∠B=2:3,求∠C、∠D的度数。
四、课堂小结 :
1、平行四边形的概念。
2、平行四边形的性质定理及其应用。
五、当堂检测
1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ).
(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是
2.(选择)如图,在 ABCD中,如果EF∥AD,GH∥CD,
EF与GH相交与点O,那么图中的平行四边形一共有( ).
(A)4个 (B)5个 (C)8个 (D)9个
3.如图,在 ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。