作为一位不辞辛劳的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。优秀的教案都具备一些什么特点呢?又该怎么写呢?以下我给大家整理了一些优质的教案范文,希望对大家能够有所帮助。下面是高考家长帮为朋友们分享的最新高中数学必修一全套教案【优秀3篇】,希望对朋友们有所帮助。
高中数学必修一全套教案 篇一
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一。教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
二。教学内容:
1.函数的定义
设a、b是两个非空的数集,如果按照某种确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数()fx和它对应,那么称:fab为从集合a到集合b的一个函数(function),记作:
(),yf_a
其中,x叫自变量,x的取值范围a叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}f_a叫值域(range)。显然,值域是集合b的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设a、b是两个非空的集合,如果按某一个确定的对应关系f,使对于集合a中的任意
一个元素x,在集合b中都有唯一确定的元素y与之对应,那么就称对应f:a→b为从 集合a到集合b的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法 ①解析法 ②列表法 ③图像法
高中数学必修一全套教案 篇二
教学目标:
1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。
2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。
3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。
教学重点、难点:
1、 重点:指数函数的图像和性质
2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。
教学方法:引导——发现教学法、比较法、讨论法
教学过程:
一、事例引入
t:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?
s: --------
t:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:
c:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )
s,t:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),
从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。
二、指数函数的定义
c:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈r.。
问题 1:为何要规定 a > 0 且 a ≠1?
s:(讨论)
c: (1)当 a <0 时,a x 有时会没有意义,如 a=﹣3 时,当x=
就没有意义;
(2)当 a=0时,a x 有时会没有意义,如x= - 2时,
(3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。
巩固练习1:
下列函数哪一项是指数函数( )
a、 y=x 2 b、y=2x 2 c、y= 2 x d、y= -2 x
高中数学必修一全套教案 篇三
教学目标:①掌握对数函数的性质。
②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。
③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。
教学重点与难点:对数函数的性质的应用。
教学过程设计:
⒈复习提问:对数函数的概念及性质。
⒉开始正课
1 比较数的大小
例 1 比较下列各组数的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logл0.5 ,lnл
师:请同学们观察一下⑴中这两个对数有何特征?
生:这两个对数底相等。
师:那么对于两个底相等的对数如何比大小?
生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。
师:对,请叙述一下这道题的解题过程。
生:对数函数的)高考家长帮○www.kaoyantv.com(单调性取决于底的大小:当0
调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1
板书:
解:ⅰ)当0
∵5.1<5.9 ∴loga5.1>loga5.9
ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,
∵5.1<5.9 ∴loga5.1
师:请同学们观察一下⑵中这三个对数有何特征?
生:这三个对数底、真数都不相等。
师:那么对于这三个对数如何比大小?
生:找“中间量”, log0.50.6>0,lnл>0,logл0.5<0;lnл>1,
log0.50.6<1,所以logл0.5< log0.50.6< lnл。
板书:略。
师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。
2 函数的定义域, 值 域及单调性。
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。