在教学工作者开展教学活动前,时常需要用到教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?下面是高考家长帮为朋友们带来的1.3有理数的加法(精选5篇),希望能够给您的写作带来一定的启发。
.3有理数的加法 篇一
教学目标
1.使学生掌握有理数加法的运算律,并能运用加法运算律简化运算;
2.培养学生观察、比较、归纳及运算能力。
教学重点和难点
1.重点:有理数加法运算律。
2.难点:灵活运用运算律使运算简便。
课堂教学过程 设计
一 从学生原有认知结构提出问题
1.叙述法则。
2.“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算。
3.计算下列各题,并说明是根据哪一条运算法则?
(1)(-9.18)+6.18; (2)6.18+(-9.18); (3)(-2.37)+(-4.63);
4.计算下列各题:
(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)]; (3)[(-7)+(-10)]+(-11);
(4)(-7)+[(-10)+(-11)]; (5)[(-22)+(-27)]+(+27);
(6)(-22)+[(-27)+(+27)].
二、师生共同研究形成有理数运算律
通过上面练习,引导学生得出:
交换律——两个有理数相加,交换加数的位置,和不变。
用代数式表示上面一段话:
a+b=b+a.
运算律式子中的字母a,b表示任意的一个有理数,可以是正数,也可以是负数或者零。在同一个式子中,同一个字母表示同一个数。
结合律——三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
用代数式表示上面一段话:
(a+b)+c=a+(b+c).
这里a,b,c表示任意三个有理数。
三、运用举例 变式练习
根据加法交换律和结合律可以推出:三个以上的有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加。
例1 计算16+(-25)+24+(-32).
引导学生发现,在本例中,把正数与负数分别结合在一起再相加,计算就比较简便。
解:16+(-25)+24+(-32)
=16+24+(-25)+(-32) (加法交换律)
=[16+24]+[(-25)+(-32)] (加法结合律)
=40+(-57) (同号相加法则)
=-17. (异号相加法则)
本例先由学生在笔记本上解答,然后教师根据学生解答情况指定几名学生板演,并引导学生发现,简化加法运算一般是三种方法:首先消去互为相反数的两数(其和为0),同号结合或凑整数。
例3
10袋小麦称重记录如图所示,以每袋90千克为准,超过的千克数记作正数,不足的千克数记作负数。
总计是超过多少千克或不足多少千克? 10袋小麦的总重量是多少?
教师通过启发,由学生列出算式,再让学生思考,如何应用运算律,使计算简便。
解:7+5+(-4)+6+4+3+(-3)+(-2)+8+1
=[(-4)+4]+[5+(-3)+(-2)]+(7+6+3+8+1)
=0+0+25=25.
90×10+25=925.
答:总计是超过25千克,总重量是925千克。
课堂练习
1.计算:(要求注理由)
(1)23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4);
(3)(-7)+(-6.5)+(-3)+6.5.
2.计算:(要求注理由)
四、作业
1.计算:(要求注理由)
(1)(-8)+10+2+(-1); (2)5+(-6)+3+9+(-4)+(-7);
(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5;
2.计算(要求注理由):
(1)(-17)+59+(-37); (2)(-18.65)+(-6.15)+18.15+6.15;
3.当a=-11,b=8,c=-14时,求下列代数式的值:
(1)a+b; (2)a+c;
(3)a+a+a; (4)a+b+c.
利用解下列各题(第4~8题):
4.飞机的飞行高度是1000米,上升300米,又下降500米,这时飞行高度是多少?
5.存折中有450元,取出80元,又存入150元以后,存折中还有多少钱?
6.一天早晨的气温是-7℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是多少?
7.小吃店一周中每天的盈亏情况如下(盈余为正):
128.3元,-25.6元,-15元,27元,-7元,36.5元,98元
一周总的盈亏情况如何?
8.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:
1.5,-3,2,-0.5,1,-2,-2,-2.5
8筐白菜的重量是多少?
课堂教学设计说明
过去不少人错误地认为,推理训练是几何教学的目的,代数可以不讲理由。其实,计算本身就是推理。计算法则、运算性质都是进行计算的根据。学生要知道每进行一步运算都要有根有据。这样通过运算就能逐步培养学生的逻辑思维能力。
.3有理数的加法 篇二
《有理数的加法》是有理数混合运算的第一堂课,所谓万事开头难,由此可见这堂课在接下来的教学中起着非常重要的指向作用。下面是我上这堂课的总结: 一。在引入部分和同学们一同探讨书上的问题,采用了让学生相互先探讨的方法,发现学生非常的投入,课堂气氛被充分调动起来了,但后来的教学中没能将这个好气氛维持下去。主要原因是问题的难度一下跨越太大,太抽象,所以在今后的教学中应多多反思,怎样深化问题的难度,并容易让学生接受。二。在一些细节部分还是没有处理到位。比如说解应用题的步骤,应将它的完整步骤都在黑板上演示一下。三。在推导有理数加法法则时,学生的回答和我自己的预期不一样,我一味引导他跟随我的思路走,所以卡住了。实际上应该让学生说完他的思路,然后引导他将其他情况补充完整。这个说明我的课堂应变能力不够灵活,所以还须锻炼提高。四。整堂课的语言需要改进,应更加精练,简洁。本堂是概念课,对于概念课来说,概念不要重复太多遍,尤其是一些说出来比较拗口的概念,容易混淆,所以当表述的差不多的时候就可以写出来,不必在这个问题上纠缠不清。
《有理数的加法》教案 篇三
教学目标:
1. 知识与技能:使学生理解加减法统一成加法的意义,能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
2. 过程与方法:经历加减法统一成加法的过程,体会加法的运算律在运算中的应用
3. 情感、态度与价值观:渗透用转化的思想看问题以及解决问题,鼓励学生依据法则简化运算
教学重点:能准确、熟练地进行加减混合运算,能自觉地运用加法的运算律简化运算,
教学难点:准确、熟练地进行加减混合运算
教学过程
一、课前预习
1、有理数的加法法则是什么?
2、有理数的减法法则是什么?
3、有理数的加法有什么运算律?具体内容是什么?
4、计算下列各题 (1)(-5)+(-8) (2)(-5)-(-8) (3)(-5)-8 (4)3-12
二、自主探索
根据有理数减法法则,有理数的加减混合运算可以统一为加法运算
例1、计算 (1)14-(-12)+(-25)-17 (2)2+5-8 (3)7-(-4)+(-5) (4)-7.2+4.7-(-8.9)+(-6) (5) - +(- )-(- )-(+ ) 解: (1) 14-(-12)+(-25)-17 =14+12+(-25)+(-17)---------------------------统一为加法 = 26+(-42)---------------------------------------运用运算律 =-16 (2) (3)(4) (5)
算式(-6)-(-13)+(-5)-(+3)+(+6)是有理数的加减混合运算,我们还可以按下列步骤进行计算: 解:(-6)-(-13)+(-5)-(+3)+(+6)
=(-6)+(+13)+(-5)+(-3)+(+6)------------统一加号 =-6+13-5-3+6----------------------------------------省略加号 =-6-5-3+13+6-----------------------------------------运用运算律=-14+19=5 说明: 省略加号的形式-6+13-5-3+6 表示-6,+13,-5 ,-3,+6这五个数的和。
例2.计算:
(1) -3-5+4 (2)-26+43-24+13-46
解:(1) (2)
例4、若a=-2,b=3,c=-4,求值
(1)a+b-c (2)-a+b-|c| (3)a-b+c (4)-a-b-c
解:(1)a+b-c=-2+3-(-4)=-2+3+4=5 ---------- [ 数据代入时,注意括号的运用]
(2) (3)(4)
例5、在伊拉克的战争中,谋生化小组沿东西方向路进行检查, 约定向东为正,某天从A地到B地结束时行走记录为(单位:km)
+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5 问:(1)B地在A地何方,相距多少千米?
(2)这小组这一天共走了多少千米
三、学习小结
这节课你学会了哪几种运算?
四、随堂练习
A类
1、计算: (1)(-30)-(+24)-(-20)+(-32)-(-32)(2) (-2.1)+(-3.2)-(-2.4)-(-4.3)
(3)(+ )-(- )+(- )-(+ ) (4) -7.52+ -1.48
(5)21-12+33+12-67 (6)-3.2+5.8-8.6+12
2 计算
(1) 1+2-3-4+5+6-7-8++97+98-99-100
(2) 66-12+11.3-7.4+8.1-2.5
(6)-2.7-[3-(-0.6+1.3)]
B类
3. 计算 (1) + + ++ (2) + + ++
.3有理数的加法 篇四
今天我说课的题目是“(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课时的内容。下面我就从以下四个方面一一教材分析、教材处理、教学方法和教学手段、教学过程 的设计向大家介绍一下我对本节课的理解与设计。
-、教材分析
分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标 、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、 在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、 就第二章而言,是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标 、重点和难点。(结合微机显示)
教学大纲是我们确定教学目标 ,重点和难点的依据。教学大钢规定,在的第一节要使学生理解有理数加法的意义,理解法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标 。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计帘具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程 中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。
四教学过程 的设计。
1, 引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出法则。
3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。
2、 就第一章而言,是本章的一个重点。有理数这一章分为两大部分一-有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
从以上两点不难看出它的地位和作用都是很重要的。
接下来,介绍本节课的教学目标 、重点和难点。
教学大纲是我们确定教学目标 ,重点和难点的依据。教学大纲规定,在的第一节要使学生理解有理数加法的意义,理解法则,并运用法则进行准确运算。因此根据教学大纲的要求,确定了本节课的教学目标 。1、知识目标是:“(1)理解有理数加法的意义;(2)理解并掌握有理数加法的法则;(3)应用有理数加法法则进行准确运算;(4)渗透数形结合的思想。2能力目标是:(1)培养学生准确运算的能力;(2)培养学生归纳总结知识的能力;3、德育目标是;(1)渗透由特殊到一般的辩证唯物主义思想:(2)培养学生严谨的思维品质。有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难,是是;有理数加法法则的理解。
二、教材处理
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我运用了直观教学的方法,让学生自己发现规律归纳总结,这不但增加了课堂的趣味性,提高了学生的能力。而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程 的设计中共中央总书记具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
三、教学方法和数学孚段
在教学过程 中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,。教学过程 中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程 中在掌握知识同时、发展智力、受到教育。
四教学过程 的设计。
1, 引入:在课堂的引入上,我 先复习数轴和绝对值,为下面运算作铺垫,再通过净胜球的计算和物体运动来导入 ,让学生自己走一下,让学生参与教学活动,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2, 探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出法则。
3, 巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。
4, 归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。
《有理数的加法》教案 篇五
教学目的:
经历探索有理数加法法则,理解有理数加法的意义。初步掌握有理数加法法则,并能准确地进行有理数加法运算。
教学重点:
有理数的加法法则
教学难点:
异号两数相加的法则
教学教程:
一、复习提问:
1、如果向东走5米记作+5米,那么向
西走3米记作__。
2、已知a=-5,b=+3,
︱a︳+︱b︱=_
已知a=-5,b=+3,
︱a︱-︱b︱=__
-1012345678
二、授新课
小明在一条东西向的跑道上,先走了5米,又走了3米,能否确定他现在位于原来位置的哪个方向?与原来相距多少米?规定向东的方向为正方向
提问:这题有几种情况?
小结:有以下四种情况
(1)两次都向东走,
(2)两次都向西走
(3)先向东走,再向西走
(4)先向西走,再向东走
根据小结,我们再分析每一种情况:
(1)向东走5米,再向东走3米,一共向东走了多少米?
+5+3(+5)+(+3)=+8
(2)向西走-5米,再向西走-3米,一共向东走了多少米?
-5-3(-3)+(-5)=-8
(3)先向东走5米,再向西走3米,两次一共向东走了多少米?
+3+5(+5)+(-3)=2
(4)先向西走5米,再向东走3米,两次一共向东走了多少米?
-5+3(-5)+(+3)=-2
下面再看两种特殊情况:
(5)向东走5米,再向西走5米,两次一共向东走了多少米
-5+5(+5)+(-5)=0
(6)向西走5米,再向东走0米,两次一共向东走了多少米?
-5(-5)+0=-5
小结:总结前的六种情况:
同号两数相加:(+5)+(+3)=+8
(-5)+(-3)=-8
异号两数相加:(+5)+(-3)=2
(-5)+(+3)=-2
(+5)+(-5)=0
一数与零相加:(-5)+0=-5
得出结论:有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加
2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得零
3、一个数与零相加,仍得这个数
例如:
(-4)+(-5)(同号两数相加)
解:=-()(取相同的符号)
=-9(并把绝对值相加)
(-2)+(+6)(绝对值不等的异号两数相加)
解:=+()(取绝对值较大的符号)
=+4(用较大的绝对值减去较小的绝对值)
练习:
口答:
1、(-15)+(-32)=
2、(+10)+(-4)=
3、7+(-4)=
4、4+(-4)=
5、9+(-2)=
6、(-0.5)+4.4=
7、(-9)+0=
8、0+(-3)=
计算:
(1)(-3)+(-9)(2)(-1/2)+(+1/3)
解略
练习:
(1)15+(-22)=
(2)(-13)+(-8)=
(3)(-0·9)+1·5=
(4)2·7+(-3·5)=
(5)1/2+(-2/3)=
(6)(-1/4)+(-1/3)=
练习三:
1、填空:
(1)+11=27(2)7+=4
(3)(-9)+=9(4)12+=0
(5)(-8)+=-15(6)+(-13)=-6
2、用“<”或“>”号填空:
(1)如果a>0,b>0,那么a+b0;
(2)如果a<0,b<0,那么a+b0;
(3)如果a>0,b<0,|a|>|b|,那么a+b0;
(4)如果a<0,b>0,|a|>|b|,那么a+b0
小结:
1、掌握有理数的加法法则,正确地进
行加法运算。
2、两个有理数相加,首先判断加法类
型,再确定和的符号,最后确定和的绝对值。
作业:课本第38页2、3
第40页1、2
本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。