1. 主页 > 范文大全 >

圆柱的表面积(优秀10篇)

在教学工作者开展教学活动前,总不可避免地需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。那么什么样的教案才是好的呢?下面是高考家长帮为朋友们分享的圆柱的表面积(优秀10篇),希望能够帮助到大家。

圆柱的表面积 篇一

课前先学——

课前,教师让学生在家做三件事:(1)自己动手制作一个圆柱;(2)写出制作的步骤;(3)制作过程中有什么发现?

课上对话——

师:谁来说说你是怎么做圆柱的?(听到老师这个提问,我在想教学从学生经历的实践体验入手,值得肯定)

生:我准备了三张纸、圆规和剪刀,……(这么自信的表达,一定很多有价值的内容,倾听,延伸,提炼,概括,问题一样得到解决。这课有听头)

师:你直接说出步骤。(这么无情地打断学生的讲话,有些失望)

生:我先准备纸,然后就卷成圆筒,再剪两个底面,就做出来了。(这是个应变能力很强的学生,老师要什么,他就能给什么。其间省略太多东西了)

师:好的。(这里的“好的”起着语言过渡的作用,然而,学生操作经历的概括,是否有助于理解圆柱的侧面和底面之间的关系,教师并没有关注)

师:侧面的长和底面的周长有什么关系?(看得出教师最急于提的是这个问题,也难怪,这个一个所有教案中都会出现的问题)

生: 相等。

师:是这样吗?请你把它剪下来。(“剪下来”的行为怎么不是学生为了说明问题的主动行为,而是教师为了板书和讲解发出的指令)

(学生刚拿出剪刀,老师就一把接了过来,把学生精心制作的圆柱剪开,贴在黑板上。有些学生小声说道:“真可惜。”)

师:同学们,你们看,(这是老师讲解前常说的一句话)这个圆柱的侧面展开是一个长方形,长方形的长等于圆柱底面的周长,长方形的宽等于这个圆柱体的高。(迫不及待地告诉,自我中心意识强)圆柱的表面积你们会算了吗?(一句口头禅式的提问,不用想都会知道学生会怎么回答)

生齐答:会了。(真的会了?还是应付老师的齐答)

如此“快节奏,高效率”的教学,看起来过程顺利,但是教师主导的课堂,能否实现教学目标,不得而知。

再读文本——

拿起教师的教学用书,我们读到了,本节课的教学还应实现这样的教学目标:

1.让学生探索研究长方形的长和宽与圆柱的关系,发现长方形的长等于圆柱的底面周长、长方形的宽等于圆柱的高;

2.在如何计算侧面积的推理过程中,锻炼形象思维和抽象思维,培养空间观念;

3.指导并训练学生规划解决问题的步骤,形成解决问题的思路。

对话学生——

课后,找到那位说制作步骤的学生,和他有了这样的对话:

师:现在愿意跟我们说说圆柱的制作过程吗?

生:老师根本没有让我把话讲完,其实为了今天的发言,我昨晚就准备了。制作圆柱其实并不容易,特别是制作规定底面和高的圆柱。我和同学们,基本都是先用一张长方形的纸做出圆柱的侧面,然后再用这个圆筒画出两个圆,作为圆柱的底面。这样制作看起来任务是完成了,但算圆柱的侧面积和底面积都不太方便。如果要是让我再制作一个,我会先量出长方形的长和宽,如果用宽作为高,这个长就要用两次,一次是用来求侧面积,一次用来算底面积,因为我发现长方形的长就是圆柱底面的周长。

师:你的发现,全班学生都会发现吗?

生:我相信我们班上有不少同学并没有很好的理解。

师:那怎么办?

生:老师不是在黑板上讲了吗?没理解的就背公式呗。

生:老师,我们在课前还讨论过这样的问题,就是为什么全班学生做出的圆柱都是瘦瘦高高的,身材都那么好。其实很多人做圆柱时,都是用长方形的长作高,宽的长度才是底面的周长,我并不赞成老师说:圆柱体侧面展开是一个长方形,长相当于底面周长,宽相当于圆柱的高。应该说:圆柱体侧面展开是一个长方形,长方形的长和宽中的一条边相当于底面周长,另一条边相当于圆柱的高。

"圆柱的表面积"教学设计来自第一范文网。

《圆柱的表面积》数学教案 篇二

教学目标

1.经历灵活运用知识自主解决实际问题的过程。

2.能灵活运用圆柱表面积的知识解决生活中的简单实际问题。

3.体验数学在日常生活中的广泛应用,培养应用意识。

教学重点

运用圆柱表面积公式计算水桶的表面积。

教学难点

注意水桶的表面积只有一个底面积。

教学过程

一、新授

观察教材中无盖圆柱形铁皮水桶示意图,了解提供的信息。

师:读题之后,你有什么想对同学们说的?

生:这道题是求做这个水桶要用铁皮多少平方厘米,实际上是求这个圆柱形水桶的表面积。题里告诉我们的一个没有盖的圆柱形铁皮水桶,计算时就是用侧面积加上一个底面积。

多人板演,一人说想法。

水桶的侧面积:3.143035=3297(平方厘米)

水桶的底面积:3.14(302)2

=3.14152

=3.14225

=706.5(平方厘米)

需要铁皮:3297+706.5=4003.5(平方厘米)

答:做这个水桶要用4003.5平方厘米。

二、尝试:试一试

1)读题理解题意。先讨论一下:画水桶用料的示意图,应该画什么?再让学生自己计算并画出水桶示意图。

注意水桶底面直径和高都是20厘米,怎样在图上画出来。

有的学生可能会说运用比例尺,老师要加以表扬。

2)交流学生画图的过程和结果。

三、巩固:练一练

1.先让学生独立完成,再交流。

选择哪一个蛋糕盒,说一说自己选择蛋糕盒的合理性。

2.读题,使学生了解木墩的'底面不漆。

3.读题,帮助学生理解题意,接缝处按1厘米计算怎样运用到题中,也就是怎样处理。学生可能不理解,这时老师可进行提示,把这一厘米应该加在底面周长上,也就是计算出底面周长后再加上1厘米,再去乘高,才是一节烟囱的侧面积。

四、课堂小结

这节课我们所研究的是有关圆柱表面积的计算问题,圆柱的表面积在实际应用时要注意什么呢?

归纳:圆柱的表面积,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

五、家庭作业

(一)求出下面各圆柱的侧面积。

1.底面周长是1.6米,高是0.7米。

2.底面半径是3.2分米,高是5分米。

(二)拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

(三)练一练第3小题。

圆柱的表面积 篇三

教学内容:教科书第40—41页的例l一例3,完成第41页的“做一做”和练习十的第2—5题。

教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。

教具准备:圆柱形的物体,圆柱侧面的展开图(仿照教科书第39页的图制作)。

教学过程 ;

一、复习

1.指名学生说出圆柱的特征。

2.口头回答下面问题:

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

学生回答后板书:长方形的面积=长×宽

二、导入  新课

教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形?

教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。

教师:这个展开后的长方形与圆柱有什么关系?

学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。

教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。

三、新课

1,圆柱的侧面积。

板书课题:圆柱的侧面积。

教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

教师边叙述边摸着圆柱的侧面演示给学生看,指出侧。面的大小就是圆柱的侧面积。

教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢?

教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。

教师:那么,圆柱的侧面积应该怎样计算呢?

引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积=底面周长×高

(板书上面等式:)

2.教学例1:

用投影片或小黑板出示例1。

让学生回答下面的问题:

(1)这道题已知什么,求什么?

(2)计算结果要注意什么?

指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。 做完后,集体订正。

3.小结。

要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径。底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式:

4.理解圆柱表面积的含义。

教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?

通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。

教师指着圆柱的展开图,“那么,是什么?”

指名学生回答,使大家明确:圆柱的表面。积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

板书:=圆柱侧面积十两个底面的面积

教学例2。

出示例2的题目。

教颊:这道题巳知什么?求什么?

学生:已知圆柱的高和底面半径,求表面积。

教师:要求,应该先求什么?·后求什么?

使学生明白:要先求圆柱侧面积和底面积,后求表面积。

教师:我们可以根据巳知条件画出这个圆柱。随后教师出示一圆柱模型,将数据标在图上。

教师:现在我们把这个圆柱展开。出示展开图,如下:

5

15

(  )

5

让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圈柱的侧面积怎样计算?圆柱的底面积应该怎样求?”

指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。

然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。

做完后,集体订正。

6.教学例3。

出示例3。

教师:这道题已知什么?求什么?

学生:己知圆柱形水桶的高是24厘米,底面直径是20厘米。求做这个水桶要用多少铁皮。

教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分?

使学生明白:水桶没有盖,说明它只有一个底面。

教师:要计算做这个水桶需要多少铁皮,应该分哪几步?

指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。

做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省赂的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

7.小结。

在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。

四、巩固练习

1.做第41页“做一做”的第1题。

教师:这道题已知什么?应该怎样求侧面积?

使学生明白可以直接用底面周长乘以高就可以得到侧面积。

让学生做在练习本上,做完后集体订正。

2.做第41页;做一做”的第2题。

让学生独立做在练习本上,教师行间巡视,做完后集体订正。

五、作业

1.完成第42页练习十的第2一;题。

(1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。

(2)第4题,圆柱形沼气池·的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。

(3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。

2.让学有余力的学生做练习十的第6‘、7‘题。

第6·题。是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。

第7‘题,是求一个没有盖的圆柱形铁皮水桶的用料:S=ΠR十2ΠH≈63.59十  339.12=402.71≈410(平方分米)

圆柱的表面积 篇四

教学过程:

一、检查复习,引入新课

(复习圆柱体的特征)

师:上节课,我们认识了一个新的几何形体——圆柱。知道它是由平面和曲面围成的立体图形。

问:圆柱上下两个圆形的平面叫圆柱的什么?它们的关系怎样?两底面之间的距离叫什么?这个曲面叫什么?

引入:两个底面和侧面合在一起就是圆柱的表面。这节课,我们就一起来学习圆柱的表面积。

二、引导探究,学习新知

(一)教学圆柱表面积的意义。

设疑:长方体6个面的总面积,叫做它的表面积。哪些面的总面积是圆柱体的表面积呢?

板书:底面积2+侧面积=表面积

要求圆柱的表面积,首先应该计算它的底面积和侧面积。

(二)根据条件,计算圆柱的底面积。

圆柱的底面是圆形,同学们会求它的面积吗?

(多媒体逐一出示圆柱及条件,求它的底面积,并记录结果。)

条件:(厘米)      r=3           d=4            c=6.28

底面积(平方厘米)   28.26         12.56            3.14

(三)教学圆柱体侧面积的计算

1、引导探究圆柱体侧面积的计算方法。

(1)设疑:圆柱的侧面是个曲面,怎样计算它的面积呢?

想一想,能否将这个曲面转化成我们学过的平面图形,从中思考发现它的侧面积该怎样计算呢?

(2)小组合作探究。(剪圆柱形纸筒)

(3)汇报交流研究结果,多媒体课件展示。

(4)小结:同学们会动脑,会思考,巧妙地运用了把曲面转化为平面的方法,探讨发现了圆柱体侧面积正好等于它的底面周长与高的乘积。

2、计算圆柱体的侧面积。

多媒体回到前面三个圆柱,逐一给出三个圆柱的高,求它的侧面积。并把结果记录下来。

条件(厘米)             h=5       h=8      h=10

侧面积(平方厘米)       94.2      100.48    62.8

(四)教学求圆柱的表面积。

1、设疑:学会了计算圆柱的底面积和侧面积,怎样计算它的表面积?

2、学生根据数据进行计算?

3、汇报计算方法及结果,媒体出示结果进行验证。

表面积(平方厘米) 150.72   125.6   69.08

(五)小结:圆柱表面积的意义及计算方法。

三、练习巩固,灵活运用

(一)多媒体出示圆柱形的油漆桶,无盖水桶、烟筒实物图,引导学生观察思考:计算制作这些物体所用的铁皮的面积,各是求哪些面的总面积?

教学要求:

1、使学生理解和掌握圆柱体侧面积和表面积的计算方法,能正确运用公式计算圆柱的侧面积和表面积。

2、培养学生观察、操作、概括的能力和利用所学知识合理灵活地分析、解决实际问题的能力。

3、培养学生的合作意识和主动探求知识的学习品质和实践能力。

教学重点:圆柱表面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探求圆柱侧面积的计算方法;同时通过多媒体的辅助教学,使新授与练习有机地融为一体,做到讲练结合,较好地突出教学重点、突破教学难点。

学法指导:采取引导    放手   引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具:圆柱体教具、多媒体课件。

学具:圆柱形纸筒、茶叶桶。

圆柱的表面积 篇五

六年级下册数学导学案

年级

六年级下册

课题

圆柱的表面积备课教师赵燕

执教

备课

日期

.2

学习目标1、知识与技能:通过动手操作,认识圆柱的展开图,理解圆柱侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法。2、过程与方法:探索和掌握圆柱侧面积和表面积的计算方法,并能解决生活中相应的实际问题。3、情感态度与价值观:进一步培养学生动手操作能力,发展学生的空间观念。

重点难点重点:理解求圆柱侧面积和表面积的计算方法,并能正确计算。难点:能灵活运用圆柱表面积、侧面积的有关知识解决实际问题

主   要  导  学  过  程教 学 环 节时间分配活动内容导学策略与方法备注一、导入新课

5分

1.指名学生说出圆柱的特征。

2.口头回答下面问题。

(1)一个圆形花池,直径是5米,周长是多少?

(2)长方形的面积怎样计算?

(3)长方形,正方形的表面积怎样计算?。

布置课前预习

二、探究新知:15分

(一)小组交流汇报预习情况。

(二)共同探究例3.

1.圆柱的侧面积。

(1)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?(学生观察看到这个长方形的面积等于圆柱的侧面积)

(2)圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.理解圆柱表面积的含义。

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+2个底面的面积

3.小组交流,合作学习例题

(1)学生汇报,集体讲解订正。

(2)师板书:①侧面积:3.14×20×28=1758.4(平方厘米)

②底面积:3.14×(20÷2)2=314(平方厘米)

③表面积:1758.4+314=2072.4≈2080(平方厘米)

答:需要用2080平方厘米的面料。

4.课堂小结:在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。小组交流,质疑,解惑,针对存在问题,教师适时点拨

三,当堂检测

15分

1.      求下面各圆柱的侧面积。

(1)    底面周长是1.6米,高0.7米。

(2)    底面半径是3.2米,高5分米。

2.一个圆柱形铁皮水桶(无盖),高12分米,底面直径是高的3/4.做这个水桶大约要多少铁皮?巩固新知,强化知识四。小结与评价3分这节课你有什么收获?五。布置作业2分1、砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?2、一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?  课后及时温故知新。板书设 计

圆柱的表面积圆柱的侧面积=底面周长×高   s=ch圆柱的表面积=圆柱的侧面积+2个底面的面积                教学反思

《圆柱的表面积》数学教案 篇六

教学目标

1、使学生理解圆柱体侧面积和表面积的含义,掌握计算方法,并能正确计算圆柱体侧面积和表面积。

2、使学生在数学学习活动中获得成功的体验,建立自信心。

教学重点

表面积的计算。

教学难点

侧面积的含义与计算方法。

教学关键利用教具,弄清侧面积与圆的关系。

教具准备圆柱侧面展开教具。

教学方法操作法。

教学过程

旧知铺垫1、口算。

3.1434100.5670.820

2、长方体表面积。12㎝

(1)长方体的表面积指的是什么?8㎝

(2)怎样计算长方体的表面积?20㎝

探索新知1、揭示并板书课题。

2、教学例3.

(1)你们知道圆柱体的表面积指的是什么吗?

(说一说、摸一摸)

(2)你们想应该怎样计算圆柱体的表面积?

(学生说明、教师演示)

板书结论:圆柱体的表面积=圆柱体的侧面积+2个底面的面积

(3)圆柱体的底面积和侧面积会计算吗?

(学生说明、教师演示)

板书推导过程。

3、尝试练习。

(1)求侧面积。

a、C=2.5dm,h=0.6dm。

b、d=8cm,h=12cm。

(2)求表面积。

a、S底=40c㎡,S侧=25c㎡。

b、r=2dm,h=5dm。

4、课堂小结。

巩固练习完成练习2的第5、6题。

布置作业完成练习2的第7、8题。

圆柱的表面积 篇七

【教学内容】p29-30例2,例3,“练一练”练习六3—8。【教学目标】使学生理解圆柱表面积的含义,掌握圆柱表面积的计算方法,能解决一些简单的实际问题。【教学重点】理解含义,掌握算法。【教学难点】联系实际分析计算圆柱的表面积或侧面积。【教学过程】一、复习。1、⑴求下图的表面积:(单位:分米)

⑵如果这是一个无盖的铁皮水桶,做这个水桶至少要多大的铁皮?2、学生练后评讲提问:①什么叫表面积?怎样求它的表面积?如下列式对吗?为什么?(3+2)×2×5+3×2×2②求做水桶要多大的铁皮,注意什么问题?怎样列式?有不同的方法吗?二、探究新知。1、教学圆柱体表面积含义。①讨论:圆柱除了侧面以外,还有几个面?怎样求圆柱的表面积?②学生汇报,教师板书:(结合圆柱的展开的平面图)圆柱的表面积=侧面积+底面积×22、教学例2。①出示例2,自由读题。②学生试做,指名板演。③评讲:先求什么?后求什么?怎样计算?指出:运用公式较多,思路要清,计算过程较繁,计算要准。3、教学例3。自学思考:①题目里告诉我们哪些条件?②要求什么?③  要求至少要用铁皮多少平方厘米?就是求什么?④课本上是分哪几步来计算的?⑤得数保留整百平方厘米数,怎么理解?教师讲解“进一位”意义及其用途。4、比较沟通复习题与例2,例3的联系。三、巩固。1、“练一练”p30。2、说说怎样求下列圆柱物体的表面积。①圆柱形油桶。①  圆柱形通风管道。③无盖的圆柱形水桶。②  圆柱形落水管。3、选择合适的底面的序号填在括号里。(单位:厘米)           12.56    18.84⑴以12.56厘米为高,卷成的圆柱体选(    )作底。⑵以18.84厘米为高,卷成的圆柱体选(    )作底。四、质疑总结。计算圆柱侧面积,表面积。⑴严格审题,弄清题意,把握已知条件。⑵明确步骤,正确列式,细心计算。⑶正确应用取近似值的方法。五、作业。练习六4、7。

《圆柱的表面积》教学设计 篇八

教案背景:

冀教20xx课标版小学数学六年级下册第四单元

教学课题:

圆柱的侧面积。

教材分析:

本节内容是学生学习了长方体与正方体的表面积后,在充分理解了表面积的含义的基础上展开的。圆柱的表面积是它的侧面积与两个底面面积的和,其中侧面积是新知识,底面积(即圆的面积)是学生学过的。所以侧面积计算方法的推导是本节课的难点,掌握侧面积的计算方法是本节课的重点。教材选用了来自现实生活中的问题,通过想象和操作活动,使学生知道圆柱的侧面沿着高展开后可以是一个长方形(或正方形),从而探索出圆柱侧面积的计算方法。在此过程中,学生把曲面转化成平面,开展了一系列的推理活动,空间观念和思维能力能够得到锻炼。

教学目标:

1、使学生理解和掌握圆柱体侧面积的计算方法,能正确运用公式计算圆柱的侧面积。

2、培养学生观察、操作、概括和思考的能力,以及灵活地分析、解决实际问题的能力。

3、培养学生的合作意识,让学生体验出探索、发现的快乐,激起热爱数学的情感。

教学重点:圆柱侧面积的计算。

教学难点:圆柱体侧面积计算方法的推导。

教法运用:本节课我采用操作和演示、讲练相结合的教学方法。通过直观演示和实际操作,引导学生观察、思考和探索圆柱侧面积的计算方法;同时将直观和抽象、新授和练习有机地融为一体,较好地突出教学重点、突破教学难点。

学法指导:采取引导—放手—引导的方法,鼓励学生积极、主动地探求新知,运用化曲为平的方法推理发现侧面积的计算方法。

教具准备:圆柱体教具、多媒体课件。

学具准备:圆柱体纸筒、圆柱体物体、长方形纸、剪刀。 教学过程:

一、复习导入,引入新知

1、复习圆柱体的特征

师:上节课,我们认识了圆柱,对圆柱体有了更深的理解,谁来说说它的特征? (指明学生回答后,课件动画展示同时师生小结)

二、课堂小结

1、本节课你有何收获?

2、教师小结:在解答实际问题前一定要先进行分析,灵活运用,选择合适的方法。

三、课后作业

应用本节课学到的知识,你会求圆柱的表面积吗?同学之间相互交流,试着推一推圆柱的表面积公式吧! 附:板书设计

圆柱的侧面积 =底面周长 ×高→S侧=ch

长方形面积=长×宽

教学反思

这节课,我在学生的认知发展水平和已有的知识经验基础上,深入钻研教材,引导学生合作探究,动手动脑,使学生学有所获。通过教学有如下感悟:

一、数学教学要注重数学思想和数学方法的渗透。

在本节课的教学中,我注重给学生渗透“转化”的数学思想方法,化曲面为平面,让学生经历观察、思考、操作等环节。课上我尽量让孩子们自己探索、发现。

二、重视学生的合作意识和实践能力的培养。

在教学圆柱侧面积计算方法时,我没有拘泥于教材上把侧面转化为长方形这一思路,而是放手学生合作探究:能否将这个曲面转化为学过的平面图形?鼓励学生大胆猜想和实验,把圆柱形纸筒剪开,结果学生根据纸筒的特点和剪法分别将曲面转化成了长方形、正方形、平行四边形等平面图形。通过观察和思考,最终都探讨出了侧面积的计算方法。在组织学生合作学习中,较好地培养了学生的合作探究能力。

三、合理利用现代化教学手段辅助教学。

侧面积计算公式的推导是本届的。难点,在教学中,我适时利用了多媒体课件辅助教学,取得了较好的效果。直观形象的图片展示,不仅有利于学生审题,而且提高了课堂效率。

圆柱的表面积 篇九

教学目标

1、理解圆柱的侧面积和表面积的含义。

2、掌握圆柱侧面积和表面积的计算方法。

3、会正确计算圆柱的侧面积和表面积。

教学重点

理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点

能灵活运用表面积、侧面积的有关知识解决实际问题。

教学步骤

一、铺垫孕伏

1、口答下列各题(只列式不计算).

(1)圆的半径是5厘米,周长是多少?面积是多少?

(2)圆的直径是3分米,周长是多少?面积是多少?

2、长方形的面积计算公式是什么?

3、说出圆柱体的特征

二、探究新知(课件演示:圆柱体的侧面积1或圆柱体的侧面积2 下载1 下载2)

1、利用圆柱体模型的侧面展开图,引导学生概括出圆柱侧面积的计算方法。

(1)学生议论:圆柱的侧面展开图(是长方形)的长与宽分别和圆柱底面周长与高的关系。

(2)引导学生概括:因为长方形的面积等于长乘宽,而这个长方形的长等于圆柱的底面周长,宽等于圆柱的高,长方形的面积就是圆柱的侧面积,所以圆柱的侧面积等于底面周长乘高。

2、教学例1.

(1)例1、一个圆柱,底面的直径是0.5米,高是1.8米,求它的侧面积。(得数保留两位小数)

学生独立解答

板书: 3.14×0.5×1.8

=1.75×l.8

≈2.83(平方米)

答:它的侧面积约是2.83平方米。

(2)反馈练习:一个圆柱,底面周长是94.2厘米,高是25厘米,求它的侧面积。

学生独立解答,然后订正。

3、教学。

(1)教师说明:圆柱的侧面积加上两个底面积就是。

(2)比较圆柱体的表面积和侧面积的区别。

是指圆柱表面的面积,是侧面积加上两个底面积,而侧面积是指圆柱侧面的面积;表面积包含着侧面积。

4.教学例2.

(1)例2、一个圆柱的高是15厘米,底面半径是5厘米,它的表面积是多少?

学生独立解答

侧面积:2×3.14×5×15=471(平方厘米)

底面积:3.14×  =78.5(平方厘米)

表面积:471+78.5×2=628(平方厘米)

答:它的表面积是628平方厘米。

(2)反馈练习:一个圆柱,底面直径是2分米,高是45分米,求它的表面积。

指名板演,其他在练习本上做,然后订正,订正时让学生讲解题方法。

5、教学例3.

(1)例3、一个没有盖的圆柱形铁皮水桶,高是24厘米,底面直径是20厘米,做这个水桶要用铁皮多少平方厘米?(得数保留整百平方厘米)

(2)教师提示:解答这道题应注意什么?

启发学生说出:这道题是求做这个水桶要用铁皮多少平方厘米。实际上是求这个圆柱形水桶的表面积。题里告诉我们的“一个没有盖的圆柱形铁皮水桶”,计算时就是用侧面积加上一个底面积。

(3)水桶的侧面积:3.14×20×24=1507.2(平方厘米)

水桶的底面积:3.14×

=3.14×

=3.14×100

=314(平方厘米)

需要铁皮:1507.2+314=1821.2≈1900(平方厘米)

答:做这个水桶要用1900平方厘米。

(4)教师说明:这里不能用“四舍五入”法取近似值。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

(5)“四舍五入”法与“进一法”有什么不同。

“四舍五入”法在取近似值时,看要保留位数的后一位,是5或比5大的舍去尾数后向前一位进一,是4或比4小的舍去。

“进一法”看要保留位数的后一位,是4或比4小的舍去尾数后都向前一位进一。

三、全课小结

这节课我们所研究的例1、例2、例3都是有关圆柱表面积的计算问题。在实际应用时要注意什么呢?

(同步教师板书课题:)

归纳:,在实际应用时,要根据实际需要计算各部分的面积,必须灵活掌握。如油桶的表面积是侧面积加上两个底面积;无盖的水桶的表面积是侧面积加上一个底面积;烟筒的表面积只求侧面积。另外,在生产中备料多少,一般采用进一法,就是为了保证原材料够用。

四、随堂练习

1、求出下面各圆柱的侧面积。

(1)底面周长是1.6米,高是0.7米

(2)低面半径是3.2分米,高是5分米

2、计算下面各。(单位:厘米)

3、拿一个茶叶桶,实际量一下底面直径和高,算出它的表面积。(有盖和无盖两种)

五、布置作业

1、砌一个圆柱形的沼气池,底面直径是3米,深是2米。在池的周围与底面抹上水泥,抹水泥部分的面积是多少平方米?

2、一个圆柱的侧面积是188.4平方分米,底面半径是2分米,它的高是多少分米?

六、板书设计

圆柱的表面积 篇十

一、动手做侧面

上节课我们认识了圆柱,这节课我们动手做就来做个圆柱。

老师这里有各种形状的纸张,(屏幕出示长方形、正方形、三角形、圆形、平行四边形的纸。)

1、选  要做圆柱,你需要选择哪些图形?

为什么选择两个大小一样的圆形?用它做圆柱的什么?(上下两个底面)

为什么选择长方形纸张?用它做圆柱的什么?

思考:只能选择长方形来做圆柱体的侧面吗?

生:除了长方形,还可以选择正方形和平行四边形。

用平行四边形怎么做圆柱的侧面

2、做

请你选一种平面图形,用它做圆柱的侧面。比一比谁做的又快又好。

3、说

用平行四边形做圆柱的侧面和长方形正方形做侧面,在粘贴的时候有什么不同?

板书:沿着高才能展开是长方形或者正方形。

师:轻轻的一握,一粘,一张平面就变成一个曲面,请你摸摸原来长方形的长、宽分别在哪里?

4、公式推导

思考:长方形的长宽在圆柱中,分别是圆柱的什么?

长 ----底面周长

宽------高。

侧面是正方形:边长=底面周长=高

把侧面沿着高展开的过程演示一下。

你能根据它们之间的关系推导出圆柱的侧面积的计算公式吗?如果是正方形,又该如何计算?

板书:底面周长高 为什么这样求? (高高=cc=边长边长)

5、练习侧面积

1.用一张长15厘米,宽8厘米长方形纸围一个圆柱体,这个圆柱体的侧面积是多少平方厘米?

2.把一个圆柱的侧面沿高展开得到一个边长为6.3厘米的正方形,它的侧面积是多少?

3.一个圆柱体,它的底面积周长是12.56厘米,高10厘米,它的侧面积是多少平方厘米?

学习要善于联想,推理。计算侧面积,除了给出底面周长和高,还可以知道哪些条件能求出侧面积?

板书公式:s=πdh=2πrh

练习计算:

1 一个圆柱体,它的底面半径是2分米,高10分米,它的侧面积是多少平方分米?

2、一个圆柱体,它的底面直径是4分米,高10分米,它的侧面积是多少平方分米?

二、做底面。

刚才我们做了圆柱的侧面,现在我遇到了难题,要请大家帮忙,行吗?

我要用12.56厘米宽6.28厘米的长方形做了一个圆柱的纸筒,怎么给它配底面呢?

看看你纸张的数据,动脑想一想。选择适合的圆形做底面做成圆柱。

完整的一个圆柱做成了,你能计算出这个圆柱用了多少张纸吗?是计算它的什么?

你觉得算圆柱的表面积,都包括哪些面的面积?怎么推导公式?板书:s表=s侧+2s底尝试一下计算表面积好吗?

出示两道练习题,让学生尝试,一定要讲清过程,2号给1号讲解自己的思路。

思考:一张长方形纸,怎么做表面积比较大?为什么?

三、全课总结。

通过这节课的学习,你有那些收获?有什么遗憾?还有什么提醒大家注意的吗?

教学目标:

1、通过想像、操作等活动,使学生知道圆柱侧面展开后是一个长方形,加深对圆柱特征的认识,发展空间观念;

2、结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

教学重点:理解求表面积、侧面积的计算方法,并能正确进行计算。

教学难点:能灵活运用表面积、侧面积的有关知识解决实际问题。

学具准备:长方形、正方形、平行四边形纸各一张,直径2厘米、3厘米、5厘米的圆形各两个,剪刀,双面胶。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。