1. 主页 > 范文大全 >

乘法的意义【精选8篇】

建议高考家长帮小编精心为大家带来了乘法的意义【精选8篇】,希望能够帮助到大家。

乘法的意义 篇一

教学建议

教材分析

这一节主要讲乘法的意义和3个运算定律。通过以前的学习,学生对乘法的计算方法已经掌握,对乘法的意义也有了初步理解,知道几个相同的数连加,可以用比较简便的形式——乘法来计算。这一节是在已学的基础上,以定义的形式给出乘法的确切意义,使学生进一步理解乘法的意义,并能运用它解决实际问题。学生在学习了乘法意义之后,教材又通过具体的例子概括出乘法的运算定律,并且进一步用字母式子表示,这为以后学习“用字母表示数”打下良好的基础。

在本小节中学生参与推导乘法运算定律的过程是教学重点。另外,在这3种运算定律中只有乘法分配律不是单一的乘法运算,它不仅涉及到加法运算,而且学生对乘法分配律与乘法结合律的应用又容易混淆,所以学习和掌握乘法分配律成为了本小节的教学难点。

教师不仅使学生学会本节的知识内容,更重要的是让学生参与获取知识的思维过程,进而培养学生的分析、推理、抽象、概括的思维能力。

教法建议

在复习阶段,教师可以通过师生比赛“看谁算得快”的形式来调动了学生学习的积极性,使学生从被动学习变为主动学习。例如:在讲解乘法结合律前通过几道计算结果是10,100,1000 的口算题,让学生找出5和2,25和4,125和8三对“好朋友”,为学习乘法结合律做了铺垫。同时也可以调动学生的求知欲。

教学乘法的意义时,教师首先要引导学生运用知识迁移,把旧知与新知联系在一起。

结合例1启发学生用多种方法解答。其次再让学生采用观察、分析的方法比较哪种算法简便?最后引导学生概括出乘法的意义。

教学乘法的运算定律时,教师可以出示几组数目不同的算式,让学生先计算,再观察每组算式有什么关系,然后再通过学生的讨论(小组、同桌、集体)、互相交流,用自己的话总结出乘法的运算定律。这样安排可以让学生参与运算定律的推导过程,使自己成为主体。

教学目标

1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题。

2.使学生理解和掌握乘法交换律,并能运用它进行验算。

3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力。

教学重点:

使学生理解并运用乘法的意义及其运算定律——交换律。

教学难点:

乘法交换律的应用。

教具学具准备

口算卡片、投影仪。

教学步骤

一、铺垫孕伏

1.口算:14×3        50×30      2×50       15×4     15+15+15+15

4+4+4+4      30×12      60× 40     4×25     9+9+9+9+9

2.导入  :刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识。乘法的意义和乘法的交换律。(板书课题)

二、探求新知

1.教学乘法意义:

(1)出示例1,指名读题。演示课件“乘法的意义”出示例1 下载

引导学生分析:横着看或竖着看,每排放几个,一共有几排?

教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

用加法计算:5+5+5+5+5+5=30(个)

或6+6+6+6+6=30(个)   (教师板书)

教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

(2)对比例1中的两种方法,哪种方法简便?

引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便。

教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

教师补充说明:求几个相同加数和的简便运算叫做乘法。演示课件“乘法的意义” 下载

相乘的两个数叫做因数,乘得的数叫积。

(3)教学1和0的乘法特点:

想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的?

启发学生举例:3×1=3   1×1=1   3×0=0    0×0=0   (教师板书

引导学生观察:这几个算式都和哪几个数有关系?

教师归纳:一个数和1相乘,仍得原数。

一个数和0相乘,仍得0.

(4) 反馈练习:(投影出示)

①下列算式能否改成乘法算式,为什么?

120+120+120+120          80+90+70          15+15+15+20

②判断:

求几个加数和的简便运算叫乘法。( )

求几个相同加数和的运算叫乘法。( )

2.教学乘法交换律:

(1)    出示例2  演示课件“乘法交换律”出示例2

观察下面每组的两个算式,它们有什么样的关系?

12×5○5×12 400×20○20×400

引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等。

学生讨论:是不是所有像这样的式子都具有这些特点呢?

引导学生互相讨论,自己举例说明,教师巡视。

启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变。

教师指出:这叫做乘法的交换律。

反馈练习:

①下列各式运用了乘法的交换律,对吗?为什么?

11×9=9×100     12×18=2×18         a+b=b+a

②课本第60页“做一做”第1题。

根据运算定律在下面的□里填上适当的数。

12×32=32×□     39×41=□×□

(2)教师提问:

加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a)    (教师板书

教师指出:这里a、b表示大于0或等于0的整数。

教师提问:以前学习哪些知识时用了乘法交换律。(笔算乘法验算时用到了乘法交换律。)

(3)练习:课本第60页的“做一做”第2题。

计算下面各题,用交换因数的位置的方法进行验算。

32×25 105×424

三、巩固发展

四、课堂小结

教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

五、布置作业

教材62页1、2题

1题、应用乘法意义说明下面各题为什么要用乘法计算?

(1)    一幢宿舍楼有6个单元,每个单元可以住15户。一共可以住多少户?

(2)    一头牛重500千克,一头大象的重量是这头牛的10倍。这头大象有多重?

2题、根据运算性质定律在下面□里填上适当的数。

15×16=16×□                 25×7×4=□×□×7

(60×25)×□=60×(□×8)       (125×□)×□=125×(9×14)

板书设计:

数学教案-课题一:乘法的意义和乘法交换律 篇二

教学难点 :用乘法交换律验算乘法

教具准备:把下面复习中的题目写在小黑板上,把例1的插图放大成挂图。

教学过程 :

一、复习

教师:我们在前面复习总结了加法和减法,今天要复习总结乘法。

教师出示复习题。

1.同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多人?

2.同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3.小荣家养鸭45只,养的`鸡是鸭的3倍,小荣家养鸡多少只?

4.小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

先让学生默读题目,然后教师提问:

“上面这些题目哪些题可以用乘法计算?为什么?”请三、四个学生逐题回答能不能用乘法计算。

教师:第1题和第3题可以用乘法计算,因为这两道题都是求几个相同加数的和。

二、新课

1.教学例1。

出示例1的插图,再提问:

“要求盘里的一共有多少个鸡蛋可以怎样求?”

“还可以怎样求?”

学生回答后教师板书:

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

“乘法算式 5乘以6表示什么?”(6个5相加)

“乘法算式中的被乘数5是加法算式中的什么数?”(相同的加数。)

“乘法算式中的乘数6是加法算式中的什么数?”(相同的加数的个数)

“解答这道题用加法计算简便,还是用乘法计算简便?”

“求几个相同加数的和可以用什么方法计算?用哪些方法比较简便?”

“你能说出乘法是什么样的运算吗?”

教题肯定学生的回答,再强调说明并板书:求几个相同加数的简便运算,叫做乘法。接着让学生看教科书第61页,齐读两遍书上的结语。

“乘法算式中乘号前面的数叫什么数?表示什么?”

“乘法算式中乘号后面的数叫什么数?表示什么?”

“被乘数和乘数又叫什么数?”

教师:学过因数以后,在一个算式中被乘数和乘数就可以不必严格区分了。

2.教学乘数是1和0的乘法。

(1)教学一个数和1相乘。

教师在黑板上写出三个算式:1×3、3×1、1×1。

“1乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书1×3=3,表示3个1相加的和是3。

“3乘以1等于什么?这个算式表示什么意思?”可以多让几个学生说一说,最后教师说明:1个3不能相加,3乘以1就表示1个3还是3,再板书3×1=3。

“1乘以1等于什么?能不能说这个算式表示1个1相加?”先让学生说一说,然后教师再说明:1个1 不能相加,1乘以1就表示1个1还是1,算式是1×1=1。

“这三个乘法算式都和哪个数有关系?”(都和1有关系)

下面我们一齐看一看一个数和1相乘它们的乘积怎样,教师在黑板上写出下面一些算式:

6×1=      1×8=     1×10=      123×1=

“谁能说一说一个数和1相乘的积有什么特点?”可以多让几个学生说一说。

教师边说边板书:一个数和1相乘,仍得原数。

(2)教学一个数和0相乘。

教师在黑板上写出三个算式0×3 =     3×0 =     0×0=

“0乘以3等于什么?这个算式表示什么意思?”学生回答后教师板书:0×3 =0表示3个0相加的和是0。

“3乘以0等于什么?能不能说这个算式表示0个3相加?”先让学生回答,教师再说明:0个3不能表示0个3相加,3乘以0就表示0个3还是0。板书:3×0=0

“0乘以0呢?”学生回答后,教师说明:0个0不能相加,0乘以0就表示0个0还是0,算式是:0×0=0。

“这三个算式都和哪个数有关系?”(都和0有关系)

“一个数和0相乘它们的积有什么特点?”

教师边说边板书,一个数和0相乘,仍得0。

3.教学乘法交换律。

让学生再看例2的插图,然后教师提问:

“要求一共有多少鸡蛋,用乘法计算还可以怎样列式?”学生回答后,教师板书:6×5=30(个)

“比较一下这两个乘法算式,有哪些相同?有哪些不同?”多让几个学生发言,互相补充。

教师:这两个算式都是两个数相乘,只是两个因数交换了位置,算出的结果相同。下面我们一起来看一下这个结论是不是有普遍性。

“12乘以5等于多少?5乘以12呢?”学生口算,教师板书算式。

“400乘以20等于多少?20乘以400呢?”学生口算,教师板书算式。

“100乘以1000等于多少?1000乘以100呢?”学生口算,教师板书算式。

“通过上面这些乘法计算,可以看出两个数相乘,交换因数的位置,计算结果怎样?”

学生发言后,教师边说边板书:两个数相乘,并换因数的位置,它们的积不变,这叫做乘法交换律。

“谁能够用字母把乘法交换律表示出来?”教师板书:a×b=b×a

“大家回忆一下,我们过去学习哪些知识时用了乘法交换律?”学生发言后,教师肯定学生回答,并明确指出:我们曾经用交换乘数和被乘数位置的方法进行乘法验算,这实际上就是用了乘法交换律。

三、巩固练习

1.做第60页“做一做”中题目。先让学生独立做,然后再集体核对。

2.做练习十三的第3、4题。学生独立做完以后,再集体核对。核对第4题的第4小题时,可以引导学生计算一下等号左面等于什么,等号右面等于什么。教师再说明:三个数连乘,相乘的因数交换了位置,乘积也不变,所以乘法交换律也适合三个数连乘的计算。

四、作业

练习十三的第1、2、5题。

乘法的意义教案 篇三

教学目标

1.使学生在原有知识的基础上,进一步理解乘法的意义,并能运用它解决实际问题.

2.使学生理解和掌握乘法交换律,并能运用它进行验算.

3.借助视察、比较、综合、概括等方法,培养学生的分析推理、抽象概括、及运用新知解决实际问题的能力.

教学重点:

使学生理解并运用乘法的意义及其运算定律——交换律.

教学难点:

乘法交换律的应用.

教具学具准备

口算卡片、投影仪.

教学步骤

一、铺垫孕伏

1.口算:14×3 50×30 2×50 15×4 15+15+15+15

4+4+4+4 30×12 60× 40 4×25 9+9+9+9+9

2.导入:刚才的口算题同学们算得很对,那么同学们想不想即算得对又算得快呢?好!为了实现你们的愿望,这节课我们继续学习乘法的有关知识.乘法的意义和乘法的交换律.(板书课题)

二、探求新知

1.教学乘法意义:

(1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载

引导学生分析:横着看或竖着看,每排放几个,一共有几排?

教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

用加法计算:5+5+5+5+5+5=30(个)

或6+6+6+6+6=30(个) (教师板书)

教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

(2)对比例1中的两种方法,哪种方法简便?

引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.

教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

教师补充说明:求几个相同加数和的简便运算叫做乘法.演示课件“乘法的意义” 下载

相乘的两个数叫做因数,乘得的数叫积.

(3)教学1和0的乘法特点:

想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的?

启发学生举例:3×1=3 1×1=1 3×0=0 0×0=0 (教师板书)

引导学生观察:这几个算式都和哪几个数有关系?

教师归纳:一个数和1相乘,仍得原数.

一个数和0相乘,仍得0.

(4) 反馈练习:(投影出示)

①下列算式能否改成乘法算式,为什么?

120+120+120+120 80+90+70 15+15+15+20

②判断:

求几个加数和的简便运算叫乘法.( )

求几个相同加数和的运算叫乘法.( )

2.教学乘法交换律:

(1) 出示例2 演示课件“乘法交换律”出示例2

观察下面每组的两个算式,它们有什么样的关系?

12×5○5×12 400×20○20×400

引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等.

学生讨论:是不是所有像这样的式子都具有这些特点呢?

引导学生互相讨论,自己举例说明,教师巡视.

启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变.

教师指出:这叫做乘法的交换律.

反馈练习:

①下列各式运用了乘法的交换律,对吗?为什么?

11×9=9×100 12×18=2×18 a+b=b+a

②课本第60页“做一做”第1题.

根据运算定律在下面的□里填上适当的数.

12×32=32×□ 39×41=□×□

(2) 教师提问:

加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a) (教师板书)

教师指出:这里a、b表示大于0或等于0的整数.

教师提问:以前学习哪些知识时用了乘法交换律.(笔算乘法验算时用到了乘法交换律.)

(3)练习:课本第60页的“做一做”第2题.

计算下面各题,用交换因数的位置的方法进行验算.

32×25 105×424

三、巩固发展

四、课堂小结

教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

五、布置作业

教材62页1、2题

1题、应用乘法意义说明下面各题为什么要用乘法计算?

(1) 一幢宿舍楼有6个单元,每个单元可以住15户.一共可以住多少户?

(2) 一头牛重500千克,一头大象的重量是这头牛的10倍.这头大象有多重?

2题、根据运算性质定律在下面□里填上适当的数.

15×16=16×□ 25×7×4=□×□×7

(60×25)×□=60×(□×8) (125×□)×□=125×(9×14)

数学教案-乘法估算 篇四

教学目标

1.使学生掌握乘法估算的方法,会进行两位数的乘法估算.

2.培养学生估算的意识,归纳概括、迁移类推的能力,以及应用所学知识灵活解决实际问题的能力.

3.养学生学习数学的兴趣,自主探索、勇于尝试的勇气,感受数学与生活的紧密联系,激发学生热爱数学、学好数学的情感.

教学重点

掌握估算的方法,会进行两位数的乘法估算.

教学难点

正确进行估算,培养学生的估算意识.

教学过程

一、生活引入:

1.小明的家离学校大约十分钟的路程,学校组织活动,要求8点钟集合,小明几点钟从家出发合适?

(在学生讨论发言的基础上,应该明确:他至少7点50分从家出发,实际上,为了不迟到,他应该提前几分钟,7点45从家出发比较合适.)

2.这个时间你是怎样得到的?用自己的话说说什么叫估算?

(在估计的基础上进行推算,这就是估算.)

3.请你举例说明,你在生活中见到过什么时候什么地方用到过估算?

二、尝试讨论

1.在学生举例的基础上,教师出示下面题目:

a.一所学校的阶梯教室有22排,每排有18个座位.这个阶梯教室大约能坐多少人?

b.一份稿件,平均每行有29个字,共有31行,这份稿件大约有多少个字?

c.小明和奶奶在健身区散步,小明每分钟大约走39米,他绕健身区一周走了12分钟,这个健身区一周长大约有多少米?

2.读题,你有什么发现?(解决这些问题,都要用到估算)

你有什么好办法吗?

3.同学之间进行小组合作学习,教师巡视指导.

三、交流归纳:

1.以小组为单位进行汇报,并说出你们是怎样想的?

a 22≈20,18≈20,20×20=400(人)

b 29≈30,31≈30,30×30=900(个)

c 39≈40,12≈10,40×10=400(米)

2.观察这几道题目有什么共同的特点?(乘数是两位数,都是用乘法.)

3.根据自己解答过程中的体会和同学的汇报,试着说一说怎样进行乘数是两位数的乘法估算?(根据学生的发言,对估算的方法进行总结、归纳:分别取近似数,再用两个近似数相乘.)

四、巩固练习

1.一本书有50页,每页排23行,每行26个字.这本书大约有多少万字?

2.小丽每分钟步行52米,1小时大约走多少千米?

3.一个粮店平均每天大约卖切面790千克,一个月大约卖切面多少千克?

4.一个苗圃有育苗地4块,每块地有91行,每行种89棵树苗.这个苗圃大约培育多少棵树苗?

5.一块长方形地,长98米,正好是宽的2倍.这块地的面积大约是多少?

6.说出下面哪些内容是估算?

(1)全世界的人口有52亿.

(2)在跳绳比赛中,东东跳了98个.

(3)这辆公共汽车上大概有40人.

(4)我们班有45名同学.

(5)小红三分钟能写85个字.

7.用估算的方法,检验下面各题算得对吗?

47×52=3414 69×51=2992

8.估算:

(1)10分钟你的脉搏大约跳动多少下?

(2)全校大约有多少学生?

五、质疑提高

1.这节课学习的是什么内容?

2.怎样进行两位数乘法的估算?请你举例说明.

3.还有什么问题?学生质疑并解疑.

六、板书设计

探究活动

估一估

活动目的

1.让学生经历估算的全过程,学会估算的方法.

2.让学生体会估算在日常生活中的作用,养成估算意识.

活动准备

天平、尺子、黄豆、纸

活动过程

1.学生每6人为一组,每组发给一袋黄豆和一打纸.

2.教师提问:每组有500克黄豆,大约有多少粒?这一打纸大约有多少张?请大家估算一下.

3.讨论出估算步骤再操作,需要工具可以来领取.

4.动手操作时合理分工协作.

5.填写估算报告表,检查计算是否正确,并做好汇报的准备.

参考1:

黄豆粒数估算报告

估算步骤

先数出10克的'黄豆有56粒,再算整袋黄豆500克有50个10克,也就是有50个56.

所用工具

天平

估算结果

共有50×56=2800(粒)

参考2:

纸的张数估算报告

估算步骤

先量出1毫米有10张纸,再量出整打纸有4厘米1毫米,也就是有41个10.

所用工具

尺子

估算结果共有41×10=410(张)

拼摆算式

活动目的

1.使学生能熟练进行加、减、乘、除的口算.

2.增强学生的小组合作精神,提高学生的动手、表达能力.

活动准备

写有数字3、+、―、×、÷、(  )等符号的纸牌.

活动过程

1.教师出示题目:

下面有5个算式,请你在这5个算式中,添上适当的+、―、×、÷、(  )等符号,使它们的得数都等于100.其中,每一个算式中的3,可以任意分组,例如3,33,333,……

3  3  3  3  3=100

3  3  3  3  3  3  3=100

3  3  3  3  3  3  3  3=100

3  3  3  3  3  3  3  3  3=100

3  3  3  3  3  3  3  3  3  3=100

2.学生分成若干小组,每组发给一组纸牌进行拼摆.

数一数 算一算

活动目的

训练学生进一步熟悉乘法口算.

活动过程

1.教师出示题目:开学初,学校要给同学们订做校服,每套服装是300元.

2.以小组为单位组织学生分年级调查各班的学生人数.

3.口算各班应收的服装钱数.

4.口算各年级应收的服装钱数.

5.口算学校应收的服装钱数

《分数乘法》数学教案 篇五

数学教案-口算乘法

口算乘法

教学目标:

(一)理解并掌握一位数乘(www.shubaoc.com)两位数进位乘法的口算方法,能正确地进行一位数乘两位数的口算.

(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,能够比较熟练地进行口算.

教学重点和难点:

重点:在理解的基础上,掌握两位数乘一位数的口算过程.

难点:理解并掌握满十向前一位进“1”的算理.

教学过程()设计:

(一)复习准备

1.投影出示口算题:(逐题回答)

10×5     20×3     14×2     34×2

2.教师提问:14×2请你说一说口算过程.(学生回答10×2=20,4×2=8,20+8=28)

3.教师引导出示课题:口算两位数乘一位数

(二)学习新课

1.板书出示:口算14×3.

(1)想一想 14×3的意义是什么?(3个14是多少)

(2)根据14×3的意义,用小棒摆出来.

(3)想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的'小棒是12,合起来是42,30+12=42

板书:   14×3=42

(4)比较14×3与14×2两道口算的异同:

(同桌或四人小组的同学互相启发进行讨论)然后请同学回答:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满 了十,最后一步是整十加上两位数.

2.做一做

(1)投影出示:

16×2=    6×3=    25×2=

(2)要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.

(3)分别请同学说出口算过程.

①16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.

②26×3,25×2分别请同学互相说,集体说,个人说.反复叙述口算过程.

3.试一试:140×3=      370×3=     1800×5=

(1)请同学想一想应该怎样做,然后试做.(教师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.

(2)集中起来说出不同的想法:

因为14×3=42,那么140×3只需在42后面添上一个0得420.

把140看成14个十,14个十乘3得42个十,即420.

3乘14得42,然后再在得数后面添上一个0.

以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.

4.做一做

投影出示:

150×6=   380×2=   130×5=

每人在自己本上直接写出结果.四人小组进行讨论,能用几种方法说出口算过程.

5.小结:今天我们学习了“口算两位数乘一位数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.

(三)巩固练习:

1.      书本练一练[1―4]

(1)    独立操作,直接写出答案。

(2)    指名说、同桌互相说口算过程。

2.    文字叙述题.

投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.

(1)乘数是7,被乘数是12,积是多少?

12×7=84

(2)250的3倍是多少?

250×3=750

数学教案-乘法的意义 篇六

(1)出示例1,指名读题.演示课件“乘法的意义”出示例1 下载

引导学生分析:横着看或竖着看,每排放几个,一共有几排?

教师提问:如果要求盘里一共有多少个鸡蛋用加法怎样解答?

用加法计算:5+5+5+5+5+5=30(个)

或6+6+6+6+6=30(个)   (教师板书)

教师提问:如果要求盘里一共有多少个鸡蛋用乘法该怎样解答呢?

用乘法计算:5×6=30(个)或6×5=30(个)(教师板书)

(2)对比例1中的两种方法,哪种方法简便?

引导学生说出:求几个相同加数的和,可用加法计算,也可用乘法计算,用乘法计算比较简便.

教师提问:从上面的算式关系,谁能说一说乘法是什么样的运算?

教师补充说明:求几个相同加数和的简便运算叫做乘法.演示课件“乘法的意义” 下载

相乘的两个数叫做因数,乘得的数叫积.

(3)教学1和0的乘法特点:

想一想:过去学过的乘法算式中,有没有不表示求几个相同加数的和的。?

启发学生举例:3×1=3   1×1=1   3×0=0    0×0=0   (教师板书)

引导学生观察:这几个算式都和哪几个数有关系?

教师归纳:一个数和1相乘,仍得原数.

一个数和0相乘,仍得0.

(4) 反馈练习:(投影出示)

①下列算式能否改成乘法算式,为什么?

120+120+120+120          80+90+70          15+15+15+20

②判断:

求几个加数和的简便运算叫乘法.( )

求几个相同加数和的运算叫乘法.( )

2.教学乘法交换律:

(1)    出示例2  演示课件“乘法交换律”出示例2

观察下面每组的两个算式,它们有什么样的关系?

12×5○5×12 400×20○20×400

引导学生分组计算,使学生明确:左边两个数的乘积和右边两个数的乘积相等.

学生讨论:是不是所有像这样的式子都具有这些特点呢?

引导学生互相讨论,自己举例说明,教师巡视.

启发学生得出结论:两个数相乘,交换因数的位置,它们的积不变.

教师指出:这叫做乘法的交换律.

反馈练习:

①下列各式运用了乘法的交换律,对吗?为什么?

11×9=9×100     12×18=2×18         a+b=b+a

②课本第60页“做一做”第1题.

根据运算定律在下面的□里填上适当的数.

12×32=32×□     39×41=□×□

(2) 教师提问:

加法交换律可用字母表示出来,如果用a和b表示两个因数,那么乘法的交换律用字母该怎样表示呢?(a×b=b×a)    (教师板书)

教师指出:这里a、b表示大于0或等于0的整数.

教师提问:以前学习哪些知识时用了乘法交换律.(笔算乘法验算时用到了乘法交换律.)

(3)练习:课本第60页的“做一做”第2题.

计算下面各题,用交换因数的位置的方法进行验算.

32×25 105×424

三、巩固发展

四、课堂小结

教师带领学生回忆本节课学习了什么?应注意什么问题?(1和0的乘法特点)

五、布置作业

教材62页1、2题

1题、应用乘法意义说明下面各题为什么要用乘法计算?

(1)    一幢宿舍楼有6个单元,每个单元可以住15户.一共可以住多少户?

(2)    一头牛重500千克,一头大象的重量是这头牛的10倍.这头大象有多重?

2题、根据运算性质定律在下面□里填上适当的数.

15×16=16×□                 25×7×4=□×□×7

(60×25)×□=60×(□×8)       (125×□)×□=125×(9×14)

板书设计 :

乘法的意义 篇七

4、

课题一:乘法的意义和乘法交换律

教学内容:教科书第25页的例1和第25、26页的乘法交换律,完成“做一做”中的题目和练习五的第1——5题。

教学目的:使学生加深对乘法的意义和乘法各部分名称的认识,理解并掌握乘法交换律,能够用乘法交换律验算乘法,培养学生分析推理的能力。

教学重点难点:乘法的意义和乘法交换律

授课类型:新授课 练习课

教学方法:讨论法、讲授法

授课时间:一课时

教具准备:多媒体

教学过程 :

一、复习

教师出示复习题。

1、同学们乘8辆汽车去参观,平均每辆汽车坐45人。去参观的一共有多少人?

2、同学们做纸花。第一组做了45朵,第二组做的和第一组同样多,第三组做了50朵。三个组一共做了多少朵?

3、小荣家养鸭45只,养的鸡比鸭多90只。小荣家养鸡多少只?

上面这些题哪些可以用乘法计算?为什么?

二、新课

1、教学例1。出示例1的插图,再提问:要求盘里一共有多少个鸡蛋可以怎样求?还可以怎样求?

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

解答这道题用乘法计算简便还是用加法计算简便?

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

2、教学乘法交换律。

让学生再看例1的插图,然后教师提问:要求一共有多少个鸡蛋,同乘法计算还可以这样列式?学生回答后,教师板书:6×5=30(个)

比较一下这两个乘法算式,有哪些相同?有哪些不同?

学生发言后,教师边说边板书:两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

三、巩固练习:

1、做第26页“做一做”的题目。先让学生独立做,然后再集体核对。

2、做练习五的第3、4题。学生独立做完后,再集体核对。

四、作业 :练习五的第1、2、5题。

小结:今天我们学了什么?什么叫乘法的交换律?

附板书:乘法的意义和乘法交换律

用加法计算:5+5+5+5+5+5=30(个)

用乘法计算:5×6=30(个)

求几个相同加数的和的简便运算,叫做乘法。

在乘法里,乘号前面的数叫做被乘数,乘号后面的数叫做乘数,乘得的数叫做积。被乘数和乘数又叫做积的因数。

注意:一个数和1相乘,仍得原数。例如:1×3=3 3×1=3 1×1=1

一个数 和0相乘,仍得0。例如:0×3=0 3×0=0 0×0=0

两个数相乘,交换因数的位置,它们的积不变,这叫做乘法的交换律。

用字母表示:a×b=b×a

乘法运算大班数学教案 篇八

一、 学情分析:

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、 课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、 教学目标

1、 知识与技能目标

掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、 能力与过程目标

经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、 情感与态度目标

通过学生自己探索出法则,让学生获得成功的喜悦。

四、 教学重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、 教学过程

1、 创设问题情景,激发学生的求知欲望,导入新课。

教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

学生:26米。

教师:能写出算式吗?

学生:……

教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、 小组探索、归纳法则

(1)教师出示以下问题,学生以组为单位探索。

以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

a. 2 ×3

2看作向东运动2米,×3看作向原方向运动3次。

结果:向 运动 米

2 ×3=

b. -2 ×3

-2看作向西运动2米,×3看作向原方向运动3次。

结果:向 运动 米

-2 ×3=

c. 2 ×(-3)

2看作向东运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

2 ×(-3)=

d. (-2) ×(-3)

-2看作向西运动2米,×(-3)看作向反方向运动3次。

结果:向 运动 米

(-2) ×(-3)=

e.被乘数是零或乘数是零,结果是人仍在原处。

(2)学生归纳法则

a.符号:在上述4个式子中,我们只看符号,有什么规律?

(+)×(+)= 同号得

(-)×(+)= 异号得

(+)×(-)= 异号得

(-)×(-)= 同号得

b.积的绝对值等于 。

c.任何数与零相乘,积仍为 。

(3)师生共同用文字叙述有理数乘法法则。

3、 运用法则计算,巩固法则。

(1)教师按课本P75 例1板书,要求学生述说每一步理由。

(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为 。

(3)学生做 P76 练习1(1)(3),教师评析。

(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。

4、 讨论对比,使学生知识系统化。

有理数乘法有理数加法
同号得正取相同的符号
把绝对值相乘

(-2)×(-3)=6

把绝对值相加

(-2)+(-3)=-5

异号得负取绝对值大的加数的符号
把绝对值相乘

(-2)×3= -6

(-2)+3=1

用较大的绝对值减小的绝对值

任何数与零得零得任何数

5、 分层作业,巩固提高。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。