1. 主页 > 范文大全 >

比例尺教学设计(优秀10篇)8-18-93

作为一位兢兢业业的人民教师,有必要进行细致的教学设计准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。那么优秀的教学设计是什么样的呢?

《比例尺》教案 1

比例尺教学设计(优秀10篇)8-18-93

一、教学目标:

1、使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。

2、使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。

二、教学重点:

求图上距离和实际距离。

三、教学难点:

求实际距离。

四、教学过程:

(一)旧知铺垫。

1、什么叫做比例尺?

板书:图上距离:实际距离=比例尺

2、说一说下列各比例尺表示的具体意义。

(1)比例尺1:45000。

(2)比例尺80:1。

(3)0——40㎞。

3、教学例2。

(1)出示课文例题及插图。

(2)说一说从中你得到哪些信息。

已知条件:

① 1号线的图上长度是10㎝。

② 这幅地图的比例尺1:500000。

所求问题:1号线的实际长度是多少?

(3)你认为可以用什么方法解决问题?

①学生尝试解决问题。

②教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。

③汇报解答情况。

方程解:

解:设地铁1号线的实际长度是x厘米。

根据图上距离:实际距离=比例尺,可以例比例式解答。

10/x=1/500000

x=10500000(问:根据什么?)

根据比例的基本性质。

x=5000000

5000000㎝=50㎞

算术解:

根据图上距离除以实际距离等于比例尺,得出:实际距离等于图上距离除以比例尺。

101/500000=10500000=5000000(㎝)5000000㎝=50㎞

4、教学例3。

(1)出示例题,学生了解题目要求。

(2)讨论:你想怎样画?

通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。

① 确定比例尺;

② 求出图上的'距离;

③ 画出操场的平面图。

(3)小组同学合作,解决问题。

学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。

(4)汇报,交流。

比例尺的应用教学设计 2

教学目标:

1、经历读平面图,根据比例尺和图上距离解决简单问题的过程。

2、能读懂平面图,能根据比例尺解决和平面图上有关的实际问题。

3、体验数学与生活的联系,感受比例尺在生活中的广泛应用。

教学方案:

教学环节:

教学预设:

一、读平面图

1、教师谈话,说明一些场所也可以按比例画出它的平面图。

师:同学们,前面我们知道了可以按一定的比例画出一个物体表面的示意图。一所学校、一个公园、一个商场也可以按一定的比例画出它的平面图。

板书:平面图。

2、让学生读某小学的平面图,交流从图中了解到的信息。给学生充分交流不同信息的机会,教师可以作为参与者交流。

师:现在,请同学们打开书第54页,认真观察某小学的平面图。

给学生一点时间观察平面图,再交流。

师:谁来说说从这幅图上,你了解到什么?

学生可能回答:

这是某小学的整体设施平面图

平面图上画了教学楼、语音室,教学楼在学校的西北边,语音室在教学楼的西南方向。

办公楼在学校的东北方向,图书室在学校的东边,微机室在学校的东南边。

操场在学校的南方,花坛在操场的正北方向……

平面图的比例尺是1:2000。

3、让学生说一说比例尺1:2000表示什么意思。然后,教师介绍比例尺1:2000的两种表示方式,并板书出来。

师:谁知道比例尺1:2000是什么意思?

学生可能会说:

生:1:2000的意思是图上的1厘米表示实际的2000厘米。

师:说的很好!1:2000,比的前项是图上距离,比的后项是实际距离。

比例尺就是图上距离和实际距离的比。1:2000还可以写成不同的形式。

教师边说边板书:

比例尺=1:2000

或比例尺=

4、参照兔博士的话比例尺的一般意义,并板书比例尺的两种书写方式。

师:根据比例尺就是图上距离与实际距离的比,我们还可以得到比例尺的'一般表达式。

教师边说边板书:

图上距离:实际距离=比例尺或=比例尺

二、自主学习

1、提出:“求校园长的实际距离”的问题,师生合作实际测量后,让学生自主计算。

师:根据平面图上的比例尺,我们知道图上的1厘米,表示实际的2000厘米。想一想,如果要想知道校园长的实际距离,怎么办?

生:需要先量出校园长的图上距离。然后根据比例尺1:2000,就可以求出实际距离。

师:好,请同学们量一量平面图上的校园长是多少。

学生测量。

师:谁来汇报你测量的结果?

生:图中的校园长是10厘米。

板书:图上距离:10厘米

2、全班交流计算的过程和结果。最后说明:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米作单位。

师:校园长的实际距离到底是多少呢?请同学们试着算一算。

学生试算,教师巡视个别指导。

师:谁来说说你是怎样想的?

学生可能出现以下算法:

因为图上的1厘米表示实际的2000厘米,现在校园长图上距离是10厘米,实际距离就是10个2000厘米,用2000×10=20000(厘米)。

我用2000×10=20000(厘米),20000厘米=200米,所以校园长的实际距离是200米。

随学生的回答教师板书:

实际距离:2000×10=20000(厘米)=200米

如果学生没有换算单位或出现错误,教师给予提示。

3、提出:“求学校宽的实际距离”的问题。鼓励学生独立完成,然后交流,解释自己的计算过程和结果。

师:学校的长用“米”做单位比较合适,所以求出厘米数后,要除以100换算成米。

师:学校宽的实际距离是多少呢?请同学们自己测量出图上距离,并试着计算。

学生自主测量、计算,教师巡视并对有困难的学生进行指导。

师:谁来说一说你是怎么做的?计算的结果是多少?

生:我先量出宽的图上距离是6厘米,因为比例尺是1:2000,实际距离就是6个2000厘米,用2000×6=12000(厘米)=120(米)。

4、提出“求学校占地面积”的要求,学生算完后交流。

师:我们已经求出了校园长和宽的实际长度,你能计算出校园的占地面积吗?试一试。

学生计算后交流。答案:

200×120=24000(平方米)

三、尝试应用

1、提出教材试一试中的问题(1),先让学生讨论一下:求学校操场的面积,应该怎么办?然后自己解答,最后交流。

师:根据平面图和比例尺,我们可以算出校园长和宽、占地面积等。如果要求操场的面积,谁知道应该怎么办?

生:先测量图上操场的长和宽,再计算出操场长和宽的实际长度。最后,计算出操场的面积。

师:请大家自己完成。

学生自主测量、计算,教师巡视并对有困难的学生进行指导。然后,指名交流。

2、提出教材试一试中的问题(2),先让学生讨论一下:要在示意图上标出旗杆的位置,应该怎么办?使学生了解:应该先根据实际距离求出图上距离。

师:同学们真棒,根据平面图和比例尺解决计算问题。现在,老师提一个比较难的问题。在学校内距南墙30米、西墙100米的位置,竖着学校的旗杆。如果要在示意图上标出旗杆的位置,你知道应该怎么办吗?

生:应该先根据实际距离求出旗杆距南墙、西墙的图上距离,然后在图中测量、标出旗杆的位置。

3、学生尝试计算,然后交流计算的过程和结果。

师:说的很好!请大家先试着计算出旗杆距南墙、西墙的图上距离。

学生尝试计算,教师巡视,帮助学习有困难的学生。

师:谁来说一说你是怎么做的?

学生可能出现以下做法:

因为图上1厘米表示实际2000厘米。旗杆距南墙的实际距离是30米,30米中有几个2000厘米,图上距离就是几厘米。30米=3000厘米,3000÷2000=1.5,所以旗杆距南墙的图上距离就是1.5厘米。同理,旗杆距西墙的实际距离100米,100米=10000厘米,10000÷2000=5,图上距离就是5厘米。

因为=比例尺,所以图上距离=实际距离×比例尺。

30×=0.015米=1.5厘米

100×=0.05米=5厘米

第(2)种方法如果没有出现,不予介绍。

师:很好,同学们计算出了旗杆距南墙、西墙的距离。现在,在图中测量、标出旗杆的位置。完成后,同桌互相检查一下。

四、课堂练习

1、练一练第1题,先让学生说说“红红家住房平面图”所包含的信息,再独立完成各小题。

师:请同学们看练一练第1题,这是红红家住房的平面图。从图中你知道了哪些信息?

学生可能会说:

这幅平面图的比例尺是1:200

红红家的客厅在阳面。

在红红家的东南角、西北角各有一个卧室。

师:比例尺1:200是什么意思?

生:就是图上的1厘米表示实际200厘米。

师:请同学们独立完成(2)(3)两个问题。

学生独立完成练习,教师巡视并指导学习有困难的学生。

五、课外延伸

2、练一练第2题,由学生课外独立完成。

师:我们一起解决了红红家住房中的一些问题,请同学们课下用1:200的比例尺画出你自己的卧室的平面图。

《比例尺》教案 3

通过本课的教学,我认为在教学中要注意以下几点:

一、生活经验与数学知识要自然融合

开始,从生活中引入学生熟悉的中国地图,让学生通过画教室的平面图,研究图上距离和实际距离的关系,进而理解和掌握比例尺的意义。但后一个的教学过程比前面的顺畅自然,因为后者更注重学生已有生活经验、已有数学知识和新学知识的融合。达到了旧知到新知的自然过渡,同时也促进了学生的主动发展。

实际距离缩小后画在图上是学生已有的生活经验,如何上升到比例尺这一新知识中来呢?首先,请同学们提问来表示图上距离和实际距离的关系,学生自然启用已有的数学知识“缩小了一定的倍数”,通过让同学计算出图上距离和实际距离的比,点明这个比就是今天要学的比例尺。这样设计的目的是让学生用已有的数学知识“缩小几倍、比的意义”为纽带,把原有的'生活经验“缩小后画在图上”和新知识“比例尺的意义”进行了融会贯通,做到了三者之间的自然融合。

新课标指出:数学教学中,应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。我想,这一过程也就是生活经验和新旧数学知识的融合过程,融合促进了学生的主动建构,提高了学生的应用和学习能力,实现了学生的生命发展。

二、教师的点拨与讲解要适时适度

新课标提倡把课堂还给学生,让学生成为课堂的主人,而教师只是教学活动的组织者、引导者和参与者。教师如何充当好这一角色呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的;教师既然是组织者、参与者,讲解和点拨又应是适时适度的。

在教学比例尺的意义时,由简单的画图到具体分析计算图上距离和实际距离关系的思维过程,同学们对生活问题数学化后,比例尺意义的揭示已是“万事具备,只欠东风”了,此时,教师的讲解成为必然。学生的学习因为教师适时的讲解有了自然过渡,实现了学生认知的和谐发展。

当然,教师的讲解和点拨还应是适度的。课堂上教师只是配角,是为学生的主动学习服务的,因此,教师的提问与讲解应具有启发性。

三、丰富了学生内心的情感世界

新的课程理念要求每一位教师树立“以人为本”的思想,在课堂教学中发挥情感教育的作用,以学生饱满的热情和积极的参与,而赢得课堂教学的高效益。本节课以学习小组为单位,教师给学生充分的时间,让他们探索、尝试、讨论、交流,教师仅仅是他们当中平等的一员。在师生互动、生生互动的过程中,学生体验到了探索的挫折与挑战、合作的效益与快乐、成功的喜悦与陶醉、事后的回顾与反思……这样的心理历程,使学生不但加深了对所学知识的认识,体验了探索的过程与方法,更增强了学生学好数学的自信心,这是培养学生终身学习的愿望与能力的有效手段。

四、对学生的理解要肯定和评价

以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生对数学的不同理解,又要尊重学生的数学思维成果。

对于求比例尺,我让学生用例题中的方法去解答,对于学生的解法只是一句话带过,没有让学生对自己的解法加以阐述,也没有对学生的解法进行合理的评价。这无疑是违背新课程标准的。要遵循学生学习数学的心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识、提高能力的同时,学会学习。

不足的地方:这方面的活动比较少,学生感到生疏。今后,在教学过程中,对有关这方面的活动要加强探究,让学生得到锻炼。

比例尺教学设计 4

教学内容:

人教版小学数学实验教材第十二册《比例尺》第48、49页的内容。

教学目的:

1。在实践活动中体验生活中需要的比例尺,能读懂两种形式的比例尺。

2。在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

教学重点:

理解比例尺的意义

教学难点:

把线段比例转换成数值比例尺

教学过程:

一、激发兴趣,引入比例尺

脑筋急转弯

师:坐公共汽车从沙市红星路到荆州火车站,一共要用50分钟,但有只蚂蚁从沙市红星路爬到荆州火车站却只用了40秒钟。你知道是怎么回事吗?

生猜:蚂蚁可能在地图上爬。

师:对了。蚂蚁爬的是从沙市红星路至荆州火车站的图上距离,而人们坐车所行的是从沙市红星路到荆州火车站的实际距离。

师:那图上距离与实际距离之间有什么关系呢?让我们先来做个游戏。

二、动手操作,认识比例尺

1、操作计算。

师:你们喜欢画画吗?那我们来个最简单的——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?

①橡皮长5厘米

②圆规长11厘米

③米尺长1米

师:咦?怎么不画了?

生:画不下。

师:那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?

生:可以把1米缩小若干倍后画在纸上。

师:这个办法不错。就用这种方法画吧。

学生画完,集体交流。

师:你是用图上几厘米的线段来表示实际1米的呢?

教师有选择的板书:

师:像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。

师:你能用比表示出图上距离与实际距离的关系吗?

教师指名回答,并板书计算过程。

2、揭示比例尺的意义。

(1)初步理解比例尺的意义

师:其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成图上距离/实际距离=比例尺。(板书)

师:下面每位同学算出自己的比例尺。

(生独立计算后汇报结果,师板书)

师:同样是1米的米尺的线段图,为什么它的比例尺却不一样呢?(缩小的倍数不同)

师:同学们,你们还记得我们上课前所说的最后一道脑筋转弯的题目吗?原来坐车是从沙市红星路到荆州的火车站实际距离约是18千米,而蚂蚁行的是30厘米的图上距离,怪不得只要3秒呢!那么,你能求出这副地图的比例尺吗?

(学生做前先交流)

师:大家交流一下,谁能告诉大家首先要做什么事情?

师:先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先写出比,再把单位统一起来,最后化简比。

学生汇报计算结果

让能说说求一幅图的比例尺的方法是怎样的?

对应练习:

完成课本第49页“做一做”

(2)联系生活,进一步理解比例尺

师:你还在哪里见过比例尺?

生1:大型建筑。

生2:房屋装修。

师:根据这幅图的比例尺,你能用另一种说法说出图上距离和实际距离的关系吗?

(让学生说出图上距离是实际距离的几分之几?实际距离是图上距离的几倍?)

三、认真比较,深刻理解

1、比较比例尺,揭示数值比例尺的意义。

师:像1:1000000这样的比例尺是数值比例尺。它也可以写成1/1000000你。能说说比例尺1:100000000所表示的意思吗?

生:距离是实际距离的一百万分之一,实际距离是图上距离的一百万倍。

师: 你还见过怎样的比例尺?(出示中国地图)引出线段比例尺。

2、认识线段比例尺。

师:把上面的线段比例尺改写成数值比例尺。

1厘米:60千米

=1厘米:6000000厘米

=1:6000000

小结:线段比例尺和数值比例尺是比例尺的两种基本形式。它们之间可以进行转换。把线段比例尺转换成数值比例尺只要把写出图上距离与实际距离的比再化简就可以了。

3、认识把实际距离放大后的比例尺

同学们,刚才我们把米尺的实际距离缩小若干倍后画在纸上,我们还求出了它的比例尺是1:100等,在实际生活中有没有要把实际距离放大后再画在图上的呢(有)

(出示三年级科学书中蚂蚁图)

师:这是同学们三年级科学书中蚂蚁图,他是把蚂蚁放大后画在书上,图上蚂蚁长6厘米,而蚂蚁实际长6毫米。你能算出这幅图的比例尺吗?

(学生尝试算出这幅图的比例尺,指名板演)

出示一些精密零件的图和图纸,介绍把实际距离放大后的比例尺。

纵观这节课所认识的比例尺,思考下列问题:

1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?

2、求比例尺时,通常要做什么?

3、化简后的比例尺,它的前项和后项一般是什么形式?

四、巩固练习,灵活运用

1、小结看书。

2、练习:

(一)填一填

(1)在比例尺是1:2000的地图上,图上距离1厘米表示实际距离( )

(2)在比例尺是1:4000000的地图上,图上距离是实际距离的( ),实际距离是图上距离的( )倍。

(3)出示一个线段比例尺表示图上1厘米相当于实际距离( )米,把这个比例尺改写成数值比例尺是(   )。

(二)判断

(1)小华在绘制学校操场平面图时,用20厘米的线段表示地面上40米的距离,这幅图的比例尺为1︰2。

(2)某机器零件设计图纸所用的比例尺为1︰1,说明了该零件的实际长度与图上是一样的。

(3)一幅图的比例尺是6︰1,这幅图所表示的实际距离大于图上距离 。

六、谈学后体会。

这节课你学到了什么?

《比例尺》教案 5

上课解决方案

教案设计

设计说明

比例尺是前面学习的比和比例知识的综合应用,通过本节课的学习,一方面可以巩固学过的比和比例知识,另一方面可以提高学生综合应用知识解决问题的能力。

结合本节课知识的特点,在教学设计上,主要关注了以下几个方面:

1.关注教学情境的创设。

建构主义学习理论认为:学习是学生主动的建构活动,学习应与一定的情境相结合。在实际情境下进行学习,可以激发学生学习的愿望。基于以上认识,教学伊始,通过观察、比较纸面同样大小的中国地图和北京地图的不同点,使学生开始关注比例尺,进而产生想了解比例尺的欲望,并以饱满的情绪进入新知的探究环节。

2.关注学生的全面发展。

除接受学习外,动手实践、自主探究与合作交流同样是学生学习数学的重要方式。本节课为学生提供了自主探究、合作学习的机会。在自主探究的过程中,先由学生独立思考,再在小组内互相交流自己的发现和解决方法,然后全班交流。此过程让学生的个性思维能力得到了充分的发展,每个学生都能从其他学生的汇报交流中获取自己需要的信息,这样,有利于促进学生的全面发展。

3.关注解题技能的形成。

解决问题是学习数学的落脚点和归宿点,因此,提高解题能力是学生发展的需要,也是使学生牢固掌握数学基础知识和基本技能的必要途径,同时也是检验数学知识的基本形式。教学中,重视解题技能的形成,精心设置巩固习题,细心引导学生从多角度思考,及时发现共性问题并巧妙点拨,促进学生知识内化,形成技能。

课前准备

教师准备 PPT课件 地图

学生准备 地图

教学过程

⊙激趣导入

1.观察比较。

(1)出示纸面和中国地图同样大小的。北京地图。(挂图)

(2)观察、交流。

这两幅地图有什么不同?

预设

生1:名称和内容不同,一幅是中国地图,另一幅是北京地图。

生2:比例尺不同,一幅是1∶100000000,另一幅是……(表述合理即可)

2.质疑。

同样大小的纸面,为什么一幅能表示出整个中国,而另一幅只能表示出一个城市?

(鼓励学生各抒己见,明确原因:作图时,选定的比例尺不同)

3.导入。

什么是比例尺?这节课我们就来认识它。(板书:比例尺的认识)

设计意图:通过观察、比较,引发学生的认知冲突,引起学生的深入思考,使学生带着浓厚的探究兴趣进入新知学习阶段。

⊙探究新知

1.教学教材53页例1上面的内容,了解比例尺的意义。

(1)课件出示自学提纲。

明确:

①什么叫比例尺?

②比例尺产生的原因是什么?

③比例尺有什么作用?

④比例尺是比还是尺?

⑤比例尺的文字表达式是什么?

(2)讨论、交流。

预设

生1:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

生2:有时按照实际尺寸无法绘制平面图,这就产生了把实际距离按一定的比缩小(或扩大)的需求,因此就产生了比例尺。

生3:比例尺有放大和缩小两方面的作用。

生4:比例尺不是尺,是比。

生5:图上距离∶实际距离=比例尺或=比例尺。

2.观察实物地图(第一幅地图的比例尺是1∶100000000,第二幅地图的比例尺是),了解比例尺的两种表现形式。

(1)观察、讨论。

①第一幅地图的比例尺属于什么比例尺?它表示什么?

②第二幅地图的比例尺属于什么比例尺?它表示什么?

(2)交流、补充。

预设

生1:比例尺1∶100000000是数值比例尺,表示图上距离是实际距离的。

生2:比例尺

是线段比例尺,表示地图上1 cm的距离相当于地面上50 km的实际距离。

(引导学生理解:一小格表示图上距离1 cm,0后面第一个数表示图上距离1 cm代表的实际距离是多少,单位看最后那个单位。两小格表示图上距离2 cm,0后面第二个数表示图上距离2 cm代表的实际距离是多少,单位看最后那个单位,以此类推)

(3)学习把线段比例尺改写成数值比例尺的方法。

师:你能把上面的线段比例尺改写成数值比例尺吗?

①尝试改写。

②指名板演。

公开课《比例尺》教学设计 6

教案背景:

本课是北师大版小学数学第十二册“正比例和反比例”这一单元的内容。它是在学生对比例的意义有了一定的建构基础以及掌握了比例的基本性质这样背景下进行探索学习的。学好这部分内容,使学生进一步巩固比例的意义和基本性质,能更好地理解地图。

教学课题:《反比例》

教材分析:

教材通过解决实际问题知识引出图上距离和实际距离的比就是比例尺。再通过练习巩固比例尺的相关知识,使学生能根据比例尺求出图上距离和实际距离。这部分内容有较强的实际应用价值,为学生架起一道数学学习和现实生活之间的桥梁,使他们充分感受到数学的现实意义,从而进一步激发学习兴趣,并为后续学习打下良好的基础。

教学目标:

知识与技能:

1、让学生在实践活动中体验生活中需要比例尺。

2通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。 过程与方法:

3运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

情感、态度与价值观:

4学生在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

教学重点:正确理解比例尺的含义。

教学难点:运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,体会比例尺的实际意义,学会解决生活中的一些实际问题。 教学法

教法:情境导入,激发求知欲望。对于意义理解部分主要采用实例讲

解法。对于运用比例尺进行相关计算时,主要用引导发现、提示理解法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法

进行学习,必要时进行合作交流。

教学课时:一课时

教学过程:

一、创设情境,提出问题:

老师为了考考大家,给同学们出个脑筋急转弯:一只蚂蚁不到20秒钟从西安爬到了北京,你知道为什么吗?

生思考回答:在地图上。

师:那么大的地方可以用一幅地图来体现出来,这里运用了什么知识? 生:图形的放缩。

师:同学们说得真好,如果要给我们的教室画一张平面图,它应该是

什么形状的?你会画吗?

生:长方形。

师:那我们来估一估它的长和宽吧

(生:长大约9米,宽大约6米 。 )

师:请大家在练习本上画出教室的平面图。(生画师巡视)

学生动手操作,反馈。

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故

意)?为什么?

生:可以利用前面所学的知识----图形的放缩,把教室的长和宽都缩

小一定的倍数在纸上表示出来。

师:你的想法很对,跟笑笑同学的想法一样。

师板书学生结果:逐步引出1:100

1学生汇报。

2学生讨论:

学生:图上1厘米长的线段表示实际100厘米。

3引出课题。

教师:这就是今天要学习的新知识——比例尺(板书课题)

二、合作探究,解决问题:

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文

字比例尺、线段比例尺。

2.认识比例尺的意义。

师:比例尺1:500是什么意思?

生1:就是图上1厘米的长度代表现实中的500厘米。

生2:实际距离是图上距离的500倍。

1生3:图上距离是实际距离的。 500

师:比例尺1:2200000是什么意思?

生1:就是地图上1厘米的距离相当于现实中的2200000厘米的距离。 生2:?

师:同学们讲得都对,那到底什么是比例尺?

学生回答,师评价并规范学生语言:对,比例尺就是图上距离与实际

距离的比。

小结比例尺的特点及应注意的问题。

三、练习巩固,检测反馈。

1、练习1、求比例尺在一幅地图上,用20cm的线段表示实际距离10

千米。求图上距离和实际距离的比?

学生独立做,集体反馈。

练习2:甲、乙两地相距320千米,画在比例尺是的地图上,应画多少厘米? 02040 60千米

练习3、4略

2、师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上"比例尺1:100"。 在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

3、再次认识比例尺

<1>出示一个手表的零件,这些零件如果要你画出来,你觉得有什么困难。你有什么办法吗?

<2>电脑课件演示。

<3>求出这幅图的比例尺。说说与一般的地图上的比例尺有什么不同。

<4>讨论板书:

比例尺把实际距离缩小一定的倍数如1:30000000

把实际距离扩大一定的倍数如200:1

<5>引导讨论要将钢笔或杯子的设计图画出来,你选择怎么样的比例尺?

补充板书:

把实际距离按原来的大小画出来,比例尺就是1:1

四、合作总结,整理内化。

通过本节课的学习,你有哪些收获?

五、布置作业。

1、请大家把书翻到30页,量一量平面图中笑笑卧室的长是()厘米,宽是()厘米。

算一算笑笑卧室

实际的长是()米,宽是()米,面积是()平方米。

学生独立完成。

2、同学们,你们能自己确定比例尺,把自己家的平面图画下来吗?

比例尺教学设计方案记录 7

教学目标:

1.在实践活动中体验生活中需要的比例尺。使学生认识比例尺的意义,学会求一幅平面图的比例尺。

2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。使学生感受数学在解决问题中的作用,提高学生学习数学的兴趣和信心。

教学重点:

认识比例尺的意义。

教学难点:

求一幅平面图的比例尺。

板书设计:

比例尺

(1)9.5厘米:95米=9.5:9500=1:1000

6厘米:60米=6:6000=1:1000

(2)19厘米:95米=19:9500=1:500

12厘米:60米=12:6000=1:500

图上距离 :实际距离=比例尺

教学过程:

(包括导引新课、依标导学、异步训练、作业设计等)

一、生活原型再现

师:(出示孙楠同学的照片)你们认识他吗?他是谁?

生:孙楠。

师:怎么可能呢?照片上的人这么小,怎么会是他呢?

生:是缩小了……

师:如果孙楠的眼睛不缩小,鼻子和嘴巴缩小了,那会怎么样?

生:不像他了,像丑八怪……

师:那怎样才能像他呢?

生:都要缩小。

师:一起缩小,是吧。如果他的眼睛缩小100倍,鼻子和嘴巴缩小10倍,像他吗?

生:不像,要缩小相同的倍数。……

二、创设情境,以疑激思

同学们都喜欢足球,踢足球要讲究战术,要研究战术需要设计足球场的平面图,下面我们就来当一回小小设计师,设计出足球场的平面图。

出示:足球场:长 95米,宽60米。 学生作图。

三、 独立探究,合作交流。

1、通过学生讨论,引出学习要求。

(1)确定图上的长和宽的长度;

(2)画出足球场的平面图;

(3)写上图上的长和宽的长度;

(4)分别写出图上长、宽与实际长、宽的比,并化简。

根据要求个人作图,完成后四人小组交流(重点交流你是怎么确定图上的长和宽的)选择你们组认为最好的,贴在黑板上。

2、学生小组学习。

3、学生汇报设计思路。

生1:我是把实际的长和宽都缩小1000倍,图上的长就是9.5厘米,宽就是6厘米,这样的长方形图就是足球场的平面图。……

(根据学生的汇报板书)

图上距离:实际距离

(1) 9.5厘米:95米=9.5:9500=1:1000

6厘米:60米=6:6000=1:1000

(2) 19厘米:95米=19:9500=1:500

12厘米:60米=12:6000=1:500

4、揭示比例尺的意义。

图上距离和实际距离的比,叫做这幅图的比例尺。

图上距离 :实际距离=比例尺

师:1:500的比例尺,说说你是怎样理解的?

生:表示图上距离是实际距离的1/500;

表示实际距离是图上距离的500倍;

图上距离和实际距离的比是1:500;

图上1厘米表示实际距离5米,

介绍数值比例尺和线段比例尺。让学生掌握两种比例尺各自的特点。

四、加深理解,拓展应用。

(1)在咱学校校园的平面图上,用15厘米长的线段表示实际长度60米,你能求出这幅图的比例尺吗?

(2)辨析:比例尺是一把尺吗?

(3)比例尺一般出现在什么地方?(地图上或平面图上)

(4)出示山东省主要城市位置图。

师:在这张地图上,你去过什么地方?

师:今年暑假老师准备去泰安登泰山,你能帮老师算一算烟台到泰安有多远吗?需要什么条件?

生:比例尺。出示比例尺 1∶8000000

生:图上距离。

师:给你一把尺子能解决这个问题吗?

学生尝试解决。

交流:

生1:在这幅地图上,我用尺子量得烟台到泰安的距离是5.5 厘米,根据比例尺图上1厘米表示实际距离80千米,5.5×80=440千米。

生2:根据实际距离是图上距离的8000000倍,可以用

5.5×8000000=44000000厘米=440千米

生3:根据图上距离是实际距离的1/8000000,也可以用

5.5÷1/8000000=5.5×8000000=44000000厘米=440米

生4:老师,也可以用方程来解。

解:设烟台到泰安的距离是x厘米。

1:8000000=5.5:x

x=44000000

44000000厘米=440千米

师:那老师如果乘坐每小时100千米的汽车,几小时就能到达?

生:4.4小时

师:可是老师以前去过泰安,是需要8个多小时才能到达的,这是为什么呢?

一时,学生都皱起了眉头陷入了沉思,经过片刻的等待,终于有孩子举起了手:“老师,我们量出的图上距离是直线的,而实际的路线不可能是直的,汽车要走许多许多弯路的。”

忽有一学生喊到:“老师,如果我们通过飞机来计算,那肯定是准确的,因为飞机可是走直线的吧!”……

五、反思体验 拓展完善

1、学生谈自己的收获,总结本节课的内容。

2、你还想知道什么?

六、作业设计

自主练习:2、3

教学后记:

(包括达标情况、教学得失、改进措施等)

上完课,我有一种意犹未尽的感觉,经历了实践与理论的深思与探索,对新课标有了更深入的理解。

(1)在学生已有的经验上学习数学

新课标指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。只有在学生的生活经验的基础上进行教学,学生才感到亲切,学得主动。通过课前展示学生的照片,学生对照片上的人是按倍数缩小了这种生活常识有了深刻的体验,再让学生来画足球场的平面图,可以说是水到渠成的。

(2)让学生经历了知识的形成过程

只有体验过,理解才会深刻。让学生在画足球场的交流互动中,体验探究比例尺的产生过程,理解比例尺产生的必要性。同时在探究过程中,学生对比例尺的意义理解是多方位的,个性化的。有了学生个性化的体验,才有了后面解决问题的个性化的表达。

(3)让学生密切联系了生活实际

数学来源与生活,又应用于生活实际。本节课从让学生设计足球场平面图,到让学生计算老师到泰安的实际距离及需要的时间,“生活中处处有数学“的理念贯穿了整个教学的始终,使学生真切地感受到学习数学的价值。

《比例尺》教案 8

⊙问题导入

1.课件出示问题。

南湖小学有一块长方形草坪,长50 m,宽30 m。把这块草坪按一定的比缩小,画出的平面图长5 cm,宽3 cm,你能求出这幅图的比例尺吗?(学生自由作答)

2.导入。

1∶1000就是上面这幅图的比例尺。这节课我们就来复习比例尺的知识。

⊙回顾与整理

1.比例尺的计算公式。

图上距离∶实际距离=比例尺或=比例尺。

2.求一幅图的比例尺,通常需要注意什么?

(1)求比例尺时,图上距离与实际距离的单位一定要相同。

(2)为了计算方便,通常把比例尺写成前项或后项是1的比。

3.比例尺的表现形式。

(1)数值比例尺。像1∶1000这样的`比例尺叫做数值比例尺。

(2)线段比例尺。在图上用有数量的线段来表示相对应的实际距离(如

)。这种比例尺叫做线段比例尺。

4.线段比例尺与数值比例尺如何相互改写?

例如:

表示图上距离1 cm相当于实际距离10 m,10 m=1000 cm,改写成数值比例尺是1∶1000。

5.根据比例尺求图上距离或实际距离。

图上距离=实际距离×比例尺

实际距离=图上距离÷比例尺

⊙典型例题解析

课件出示典型例题。

在比例尺为

的图纸上量得甲、乙两地相距15 cm,甲、乙两地实际相距( )km。

分析 本题考查的是学生对线段比例尺与数值比例尺相互改写的掌握情况。

先把线段比例尺化成数值比例尺,即=,然后根据数值比例尺求出实际距离。

解答 方法一 因为图上距离÷实际距离=比例尺,所以实际距离=图上距离÷比例尺。

15÷=7500000(cm)=75(km)

方法二 因为图上距离1 cm表示实际距离5 km,所以图上距离15 cm表示的实际距离是15个5 km。

15×5=75(km)

方法三 因为同一幅图的比例尺是固定的,所以可以根据比例尺一定来列比例解答。

解:设甲、乙两地实际相距x cm。

x=7500000

7500000 cm=75 km

⊙探究活动

1.课件出示探究题。

在比例尺为的图纸上,画一个边长为4 cm的正方形草坪,草坪的实际周长是多少?实际面积是多少?

2.小组合作,讨论解法。

3.汇报解题思路和解题过程。

预设

生1:要想求出草坪的实际周长,应先求出草坪的实际边长。

4÷=20000(cm)

20000 cm=200 m

200×4=800(m)

生2:要想求出草坪的实际面积,可以先求出草坪的图上面积,然后再除以比例尺。

4×4÷=80000(cm2)

80000 cm2=8 m2

生3:要想求出草坪的实际面积,应先求出草坪的实际边长,再求实际面积。

4÷=20000(cm)20000 cm=200 m 200×200=40000(m2)

4.观察比较。

同样是求草坪的实际面积,得到的结果为什么不同?

《比例尺》教案 9

教学目标

1、知识与技能:使学生理解比例尺的意义,学会求比例尺,图上距离和实际距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度和价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点

理解比例尺的概念,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点

从不同的角度理解比例尺的意义。

教学准备

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图、一张方格纸。

教法学法

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

教学过程

一、 导入激趣

师:同学们,你们见过这个成语吗?(板书:以――当――)

生:以一当十。(指名回答)

师:那这样的话以三当几?以七当几?你是怎么算的?

生:以三当三十,当七当七十。三乘十等于三十,七乘十等于七十。(指名回答)

师:那反过来,以几当五十?以几当一百二十?你又是怎么算的呢?

生:以五当五十,以十二当一百二十。五十除以十等于五,一百二十除以十等于十二。

师:大家真聪明!今天我们就用数学的眼光来看一下在数学中如何以一当十,以一当百,以一当千,甚至以一当更多。

二、 意义构建

1、师:如果要给我们教室画一个平面图,它应该是什么形状的?

生:长方形。

师:我们以前测量过教室的长、宽各是多少?

(生:长大约8米,宽大约6米 。 )

师:请大家在方格纸上画出我们教室的平面图。(生画师巡视)

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的'长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)

师:大家画的图是长8米,宽6米吗?(不是)谁来说说是怎么画的?(展示生的作品)

(学生的答案可能有:长方形长8厘米,宽6厘米。或者是长4厘米,宽3厘米。)

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是4:3。

观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)

师:是啊,这两个平面图,别人一看会知道我们教室的大概形状, 但我们的教室不可能是长8厘米、宽6厘米,也不可能是长4厘米、宽3厘米,你能想个办法,让别人也知道我们教室有多大吗?(生动脑想、动手写)

引导学生汇报:

(1)直接写上“教室面积大约50平方米。”

(2)在图上标出“长8米、宽6米。”

(3) 标上“1厘米=1米”。

(4)1厘米怎么能等于1米呢?我认为可以写“1厘米相当于1米。”

( 激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)

师:看来同学们很爱动脑筋,遇到问题会想办法。其实这个问题里面就藏着我们今天所要学习的新知识。(板书课题:比例尺)

让生自学课本第30页什么是比例尺?

集体交流什么是比例尺,比例尺其实是一个比,注意谁是前项谁是后项。师根据生的回答板书:图上距离:实际距离=比例尺或分数形式。

(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)

让生说出自已画的两幅图的比例尺各是多少,是如何计算的。师根据生的回答板书相应比例尺。

2、让学生议一议可以怎样理解比例尺所代表的意义。

图上的1厘米表示实际的多少?(注意单位要统一)

实际距离是图上距离的多少倍?把图上距离扩大多少倍就是实际距离?

图上距离是实际距离的多少分之一?把实际距离缩小多少倍就是图上距离?

图上距离相当于多少份?实际距离相当于多少份?

三、实际应用

(一)基本运用(小黑板出示)

1、把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米。

判断下列几句话中,哪些比是比例尺,哪些不是。

(1)图上宽与图上长的比是1∶2 (  )

(2)图上宽与实际宽的比1/400是 ( )

(3)图上面积与实际面积的比是1 ∶160000( )

(4)实际长与图上长的比是400 ∶1 ( )

(5)图上长与实际宽的比是1 ∶200 ( )

通过比较判断说理使学生更加明确比例尺概念的外延,加深对比例尺意义的理解。

2、在一幅比例尺是1:6000000的中国地图,深圳到上海的图上距离是20.3厘米,深圳到上海的实际距离是多少千米呢?在学生计算之前先引导学生从倍数的角度回忆比的意义。提醒学生计算结果的单位名称,然后总结方法。

3、深圳到上海的 距离是1218千米,在一幅比例尺是1:9000000的中国地图上,深圳到上海的图上距离会是多少呢?提醒注意单位统一。

在这个基本运用的过程中,鼓励学生用多种方法解。

4、生先独立完成课本第30页1至5题,然后集体订正。

(二)拓展延伸

1、笑笑家买了一个长5米的家具,请同学们算一下在客厅中能放得下吗?

2、拿出自己准备好的中国地图,测算你的家乡到北京的实际距离。

四、课堂小结

师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?通过本节课的学习你知道什么叫比例尺了吗?如何求一幅图的比例尺?图上距离?实际距离呢?

五、布置作业(略)

六、板书设计

比例尺

以一当十

学生的图 1:100 或分数 图上距离:实际距离=比例尺

(贴) 1:200 或分数 前项一般为1

(强调比例尺的前项一般为1)

3、师出示准备的地图上不同比例尺,介绍比例尺的不同形式,并说出它们的意义。然后让学生拿出课前准备的地图,找一找地图上的比例尺并说一说自己找到的比例尺的意义,为后面图上距离和实际距离做铺垫。

公开课《比例尺》教学设计 10

教学目标:

知识与技能:通过组织学生画出的平面图,使学生体会到图上距离与实际距

离的比,知道图上距离比实际距离就是比例尺,知道比例尺的两种形式并能互化。过程与方法:学生通过小组观察、思考、动手、讨论等合作学习,进一步发展了画图能力以及互相合作、协调的能力。

情感、态度与价值观:结合学生认知规律,充分发挥信息技术与学科教学整合的功能,激发学生的求知欲望,在具体的探究过程中,培养学生的信息素养以及与人交流、沟通,互动、互助的学习品质。

重点和难点:

理解比例尺的概念,能正确根据比例尺的意义解决问题。

教学过程

一、设置教学情境,感受比例尺

(一)画画比比

1、估计黑板的长和宽:教室前的这块黑板同学们熟悉吗?

请你估计一下黑板的长和宽。

2、丈量黑板的长和宽:(板书:黑板实际长3.5米,宽1.5米)

3、画黑板:你能照样子把黑板画在本子上吗?(师巡视)

4、质疑:这么大的黑板,为什么能画在这么小的一张纸上呢?(长和宽按一定的比例缩小了。)

5、挑两个黑板图(一个画得不像一个画得较像)出示:

评价:①谁画得更像一点?

②分析图A画得不像原因可能是什么?(长和宽缩小的比例不一样。)

师生合作,算一下长和宽分别缩小了多少倍?得数保留整数。(屏幕显示)

图上长7厘米,长缩小:350÷7=50

图上长5厘米,长缩小:350÷5=70

宽1.5厘米,宽缩小:150÷1.5=100

宽2.5厘米,宽缩小:150÷2.5=60

师点拨:从上面计算结果来看图A长和宽缩小的比例差距较大(即比例失调),所以看上去画得不像;而图B长和宽缩小的比例接近,所以看上去画得较像。

(二)再画再比

1、想一想怎样画得更像?(长和宽缩小的比例要保持相同。)

2、课件展示准确的平面图:

3、请你帮老师算算长和宽分别缩小多少倍?

图上长3.5厘米缩小:350÷3.5=100

宽1.5厘米缩小:150÷1.5=100

4、小结:当长和宽缩小的倍数相同时,黑板的平面图就十分逼真!由此可见,为了能反映真实的情况,画图时必须要有个统一的标准,这个统一的标准就是比例尺。(板书:比例尺)

二、结合实际,理解比例尺

(一)说一说

①讲授:课件中的长方形是按缩小100倍来画的,我们就说这幅图的比例尺是1﹕100。

②谁来说说比例尺1﹕100表示什么?(图上距离是实际距离的一百分之一;实际距离是图上距离的一百倍;图上距离1厘米表示实际距离100厘米等等)

③图A、图B长和宽比例尺各是多少?分别表示什么?

小结:一幅图一般只有一个比例尺,当长和宽的比例尺不一样时,所画黑板就会失真。

④用自己话说说什么叫做比例尺?怎样计算比例尺?

小结:图上距离与实际距离的比叫做比例尺;比例尺通常写成前项是1的比。

(二)算一算

①下图是我校附近的平面图(屏幕同时显示),水果批发市场距我校直线距离约300米,可在这幅图上只画了3厘米,这幅图的比例尺是多少?

评讲:你是如何算得?结果是多少?(1﹕10000)要注意些什么?

②从1﹕10000这一比例尺上,你能获取那些信息?

板书:图上距离是实际距离的一万分之一;实际距离是图上距离的一万倍;图上距离1厘米表示实际距离10000厘米等等。

三、自学新知

师:今天学的比例尺就是书上48至49面的内容,请同学们打开书,认真看看,还有什么内容陈老师没讲到的呢。

1、学生看书自学,汇报。

2、认识数值比例尺和线段比例尺师:有关比例尺的知识还有很多呢(1)出示:标有数值比例尺的中国地图让生说比例尺1:100000000的意思(2)出示:机器零件图说出图中2:1的意思

师:像1:100、1:100000000、2:

1、、、、这些比例尺有什么特点?(生汇报,师小结为了计算方便,一般都把前项或后项写成是1的比。像这样用数字比的方式表示的比例尺叫做数值比例尺。)(3)出示:标有线段比例尺的北京地图

让生讨论比段比例尺的意思,并介绍线段比例尺。师:那怎样将线段比例尺变成数值比例尺呢?

3、线段比例尺改写数值比例尺

学习例1,学生分小组讨论尝试改写,汇报。师板书。师:谁能说说改写时要注意什么?(师生共同小结)

四、巩固练习

1、火眼金睛

(1)比例尺是一把尺子。(

(2)一幅图的比例尺是80:1,表示实际距离是图上距离的80倍。(

)(3)比例尺的后项一定比前项大。(

2、练习八的第

1、2题。

学生完成后,让学生说说自己的想法。

3、完成练习八的第3题。学生完成后,指名学生汇报。

四、课堂总结,回顾比例尺。

师:通过这节课的学习,你能用“收获、启发、成功、遗憾”四个词谈谈你这节课的感受吗?