初中数学教案如何写?作为一个默默奉献的教育者,我们通常需要用教案来辅助教学。教案的编制有利于我们科学合理地利用课堂时间。读书是学习,摘抄是整理,写作是创造,如下是细致的小编为家人们收集整理的初中数学教案优秀9篇,欢迎参考阅读。
四年级人教版数学教案 篇一
一年级数学教案人教版1
左和右
教学目标:
1、通过游戏,认识自己身上的左右位置。
2、通过观察、讨论、交流,知道以自我为参照中心的左右位置。
3、通过观察,小组合作讨论,辨析,实践活动,能说出以其他物体为参照中心的左右位置。
4、感知生活中处处有数学,并对学生进行安全教育。
教学重点、难点:
从以自我为参照中心确定左右位置过渡到以其他物体为参照中心确定左右位置。
教学准备:
多媒体
教学过程:
一、游戏引入,激发兴趣
师:在今天上课之前老师先请小朋友们放松一下,请大家听一段音乐。
师:刚才我们跳舞的时候,出现了两个方位词,小朋友听出来了么?(左和右)
师:对!今天我们将学习有关左与右的知识。
出示课题:左和右(注意左、右的写法)
二、共同探讨,获取新知
1、用左右手引入,感知自身的左与右。
师:这个小朋友在吃饭,你们能告诉老师哪只是左手,哪只是右手?(拿调羹的是右手,拿碗的是左手)。
师:你们平时习惯用哪只手拿调羹的?请举起这只手。(学生举手)
师:其实在我们的生活中,大多数人和你们一样习惯用这只手拿调羹,我们就称这只手为右手(贴上粘纸“右”)。所以和右手同方向的这一边就叫做右边,这只脚就是右脚。
师:这只手是右手,那另一只手就是左手(贴上粘纸“左”)。所以和左手同方向的这一边就叫做左边,这只脚就是左脚。
师:我们现在能分清楚左手、右手,左脚、右脚。小朋友再看一看自己的身体,还有像这样的左与右吗?谁来说说?(要求学生摸着说)
师:我们小朋友已经学会区分左右了,接着老师请小朋友来做一个小游戏。游戏的名字是:听口令做动作。
左拍拍、又拍拍,
向左看、向右看,
左手摸左耳、右手摸右耳,
双手举起来,耶。
师:小朋友真聪明,现在老师这里有些图片。图片上面是我们小朋友身上的某些部分,你知道它们是左边还是右边吗?
小结:将自身的位置调整到与照片中的位置相同,再判断。
2、结合具体场景,进一步理解以自我为参照中心左与右的位置关系。
师:小朋友们真聪明!今天来了很多老师,他们对你们不是很熟悉,你们能帮陈老师介绍一下自己的同学吗?不过在介绍之前老师也对小朋友们提一个小小的要求那就是你要告诉我:我的左边是谁?我的右边是谁。(学生介绍)
师:(请一名学生的左边同学站起来)
3、认识以其他物体为参照中心的左与右
(1)、出示P47的题1
师:小朋友们介绍得真不错,你们已经认识了左与右,我们现在到大街上去瞧一瞧!
师:大街上来来往往的车辆和行人真多,真热闹啊!我们在过马路时要注意什么?
小结:过马路,要安全,先看左,再看右。(板书)
(2)、出示P47的题2
师:小丁丁想过马路,他先看看左,再看看右。他向左看到了什么?向右看到了什么?
请个别同学回答。
(4)、出示P47的题3
师:这时,小巧也准备过马路。那么,她向左看到了什么?向右看到了什么?
独立完成后核对。
师:今天我们一起学习了“左与右”,知道在我们的生活中会经常碰到左与右。比如上课时,我们举右手;上下楼梯时要靠右走。如今世博会就要在上海举行了,我们要遵守世博礼仪,其中有一条就规定,乘坐自动扶梯时,要左行右立。只有遵守世博礼仪,我们才是讲文明的小公民。
三、通过游戏,巩固新知
1、说一说。
师:小丁丁跟着妈妈去超市购物,他们来到了文具柜台。呵!那么多玩具,挑选什么呢?妈妈规定只能买一样,并且不能说出它的名字,只能说出它的左、右邻居各是谁。小朋友,如果你是小丁丁胖,你会怎么说呢?其他小朋友能根据他的说法,猜出他想买的是什么吗?
2、摆一摆。
(1)师:把数学书摆在课桌的中间,把文具盒摆在数学书的右边,把铅笔摆在文具盒的右边,把学具盒摆在数学书的左边,把橡皮摆在学具盒的左边。
(2)让学生说一说,摆在最左边的是什么,摆在最右边的是什么。从左数,文具盒是第几个,从右数,文具盒是第几个。数学书的左边有什么,右边有什么。
3、跳一跳
出示:《分清左右》:向左拍拍,向右拍拍,向左拍拍,向右拍拍,左手跳舞,右手跳舞,左手、右手分得清楚。
板书:左与右
过马路,要安全,
先看左,再看右。
一年级数学教案人教版2
教学目标:
1、从数铅笔的具体情境中认识百以内的数,体验数量与物体的对应关系。
2、会数、会读百以内的数,还能根据一定的规律数数。
3、体会数位、基数、序数的意义。
教学重点:
数数、读数。
教学难点:
有规律的数数。
教学过程:
一、情境创设,激发兴趣
1、小朋友刚过了一个愉快的新年,大家都到长辈那儿拜年,你在春节里有什么收获吗?
2、今天,老师也准备了一些礼物要送给大家,看……(出示铅笔)一共有多少支铅笔呢?
二、数数、读数
1、我们来数一数,说说你是怎样数的?
2、学生活动:
(1)一支一支地数、两支两支地数、五支五支地数。
(2)把10支捆成一捆,一捆一捆地数。
明确10个十是100。
(3)活动时让学生自己动手,分不同的形式数)
3、圈一圈,数一数。(第2页)并说说是怎么数的。
4、在下面各数的后面连续数出5个数来。
二十三、五十六、七十七、八十五、九十五
5、读数、拨数。
师写出一个数,生读,并在计数器上拨出来,说说是怎么拨的,表示什么。如43,十位上拨4,表示4个十;各位上拨3,表示3个一。
三、练一练
1、数数(顺数、倒数)
2、看谁数得快。(第3页)
主要让学生明白十个十个数的方法。
3、接力赛。(第3页)
四、课外活动
数一数自己小组同学的铅笔一共有几支。
一年级数学教案人教版3
教学目标:
1、通过“数豆子”的实践活动,初步培养学生的估算意识。
2、在“数豆子”的操作活动中体会物体与数量的对应关系,体验数的实际意义。
3、会写百以内的数,进一步体会数位、基数、序数的意义。
教学重点:
通过不同的活动理解位值意义。
教学难点:
位值意义。
教学过程:
一、情境创设
1、出示一杯豆子(内装28粒)。
2、请学生估计一下有多少粒。
3、师生共同先数10粒放入另一杯子中,再估计一下。
4、谁估计得比较正确呢?为什么?我们来数一数吧。
二、数豆子
1、指名几生来数,其他学生跟着数。
(用不同的方法数)
三、知识学习
1、智慧老人:这个数怎么拨?怎么写?
2、学生试一试,说说怎么拨,怎么写。(每个学生在计数器上拨,在纸上写,再指名拨、写)
3、小组合作:说说这个数的各数位上数的意义。
4、汇报交流。
5、小结:十位上的数表示几个十,个位上的数表示几个一。
6、摆一摆。摆出26根小棒,说说是怎么摆的。
7、讨论:22的这两个“2”的意义一样吗?
8、交流。
四、巩固练习
1、写出计数器上表示的数,并说说意义。(第4页)
2、填空(第5页)
补充:根据老师的表述写数。如:6个十和3个一是。
3、看计数器写数。(第3题)
4、写门牌号,理解序数的意义。(第4题)
5、游戏:抓小棒,先估计有多少根,再数一数,说一说有几个十和几个一。
一年级数学教案人教版
人教版初中数学教案 篇二
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程。
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。
重点
求根公式的推导和公式法的应用。
难点
一元二次方程求根公式的推导。
一、复习引入
1、前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)
2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评)。
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根。
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。
(2)这个式子叫做一元二次方程的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根。
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6)。
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况。
五、作业布置
教材第17页 习题4
人教版初中数学教案 篇三
掌握用因式分解法解一元二次方程。
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。
重点
用因式分解法解一元二次方程。
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
二、探索新知
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积。)
练习:下面一元二次方程解法中,正确的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11
人教版初中数学教案 篇四
公式法
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程。
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程。
重点
求根公式的推导和公式法的应用。
难点
一元二次方程求根公式的推导。
一、复习引入
1、前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2)2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)
2、面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)
(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评)。
(1)先将已知方程化为一般形式;
(2)化二次项系数为1;
(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根。
二、探索新知
用配方法解方程:
(1)ax2-7x+3=0 (2)ax2+bx+3=0
如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题。
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(这个方程一定有解吗?什么情况下有解?)
分析:因为前面具体数字已做得很多,我们现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去。
解:移项,得:ax2+bx=-c
二次项系数化为1,得x2+bax=-ca
配方,得:x2+bax+(b2a)2=-ca+(b2a)2
即(x+b2a)2=b2-4ac4a2
∵4a2>0,当b2-4ac≥0时,b2-4ac4a2≥0
∴(x+b2a)2=(b2-4ac2a)2
直接开平方,得:x+b2a=±b2-4ac2a
即x=-b±b2-4ac2a
∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根。
(2)这个式子叫做一元二次方程的求根公式。
(3)利用求根公式解一元二次方程的方法叫公式法。
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根。
例1 用公式法解下列方程:
(1)2x2-x-1=0 (2)x2+1.5=-3x
(3)x2-2x+12=0 (4)4x2-3x+2=0
分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可。
补:(5)(x-2)(3x-5)=0
三、巩固练习
教材第12页 练习1.(1)(3)(5)或(2)(4)(6)。
四、课堂小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a,b,c,注意各项的系数包括符号;3)计算b2-4ac,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果。
(4)初步了解一元二次方程根的情况。
五、作业布置
教材第17页 习题4
因式分解法
掌握用因式分解法解一元二次方程。
通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题。
重点
用因式分解法解一元二次方程。
难点
让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便。
一、复习引入
(学生活动)解下列方程:
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解。
二、探索新知
(学生活动)请同学们口答下面各题。
(老师提问)(1)上面两个方程中有没有常数项?
(2)等式左边的各项有没有共同因式?
(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解。
因此,上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.
(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法。
例1 解方程:
(1)10x-4.9x2=0 (2)x(x-2)+x-2=0 (3)5x2-2x-14=x2-2x+34 (4)(x-1)2=(3-2x)2
思考:使用因式分解法解一元二次方程的条件是什么?
解:略 (方程一边为0,另一边可分解为两个一次因式乘积。)
练习:下面一元二次方程解法中,正确的是( )
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x,两边同除以x,得x=1
三、巩固练习
教材第14页 练习1,2.
四、课堂小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用。
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
五、作业布置
教材第17页 习题6,8,10,11
人教版高三数学教案 篇五
活动目标
1.感知一个数的两个部分数之间的互换关系。
2.能运用互换的方式省略相关的几组分合式。
活动准备
1.教具:贴绒分合式。
2.学具:每人1组6以内数的分合式(幼儿用书),每人1支笔。
活动过程
1.玩“填数”的游戏,复习6的组成。
教师出示6的贴绒分和式,提问:“这个式子表示什么意思?6可以分成几和几?” 教师出示6的贴绒分和式,并提问:“谁能把这几个式子空缺的数字填出来?”“屈;老师。教,案网出处”(6可以分成1和5,2和4,3和3)
2.学习把重复的省去。
教师:“请小朋友帮6找出3个数字相同的分合式。”
教师将幼儿的答案归在一起,提问:“它们有什么相同之处和不同之处?”引导幼儿讨论数字相同的两个分合式的相同点和不同点,引导幼儿发现两个部分数的位置不同,总数不变。
3.幼儿操作练习。
幼儿每人1组6以内数的分合式,教师提醒幼儿仔细看一看,然后把重复的数字划掉,把留下的重写1遍,再看1个分合式说出2个不同的分合式。
活动建议
1.在日常活动中可多进行数的组成方面的相关游戏,并引导幼儿发现其中的一些规律。
2.活动可以采取分组的形式。
活动评价
1.知道进行数的分合时两个数字之间有一定的互换关系。
2.理解分合式中重复的两组是相同意义的分合式。
活动反思
数字是无处不在的,它们的存在也给我们的生活带来了很多的方便。为了使幼儿体会数字与人类社会的密切联系。本次活动以幼儿的生活经验为基础,将幼儿的学习活动与他们真实的生活紧密联系在一起,进一步激发幼儿探索数学王国的兴趣,感受数字与生活的奇妙联系,引导他们去寻找数字、发现数字、感受数字、运用数字。在实践活动中体会数字的无穷魅力,从而去学习数学,理解数学,发展数学。
有理数的大小比较 教案 篇六
一、背景知识
《有理数的大小比较》选自浙江版《义务教育课程标准实验教科书数学七年级(上册)》第一章《从自然数到有理数》的第5节,有理数大小比较的提出是从学生生活熟悉的情境入手,借助于气温的高低及数轴,得出有理数的大小比较方法。课本安排了"做一做"等形式多样的教学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程。
二、教学目标
1、使学生能说出有理数大小的比较法则
2、能熟练运用法则结合数轴比较有理数的大小,特别是应用绝对值概念比较两个负数的大小,能利用数轴对多个有理数进行有序排列。
3、能正确运用符号"<"">""∵""∴"写出表示推理过程中简单的因果关系。
三、教学重点与难点
重点:运用法则借助数轴比较两个有理数的大小。
难点:利用绝对值概念比较两个负分数的大小。
四、教学准备
多媒体课件
五、教学设计
(一)交流对话,探究新知
1、说一说
(多媒体显示)某一天我们5个城市的最低气温 从刚才的图片中你获得了哪些信息?(从常见的气温入手,激发学生的求知欲望,可能有些学生会说从中知道广州的最低气温10℃比上海的最低气温0℃高,有些学生会说哈尔滨的最低气温零下20℃比北京的最低气温零下10℃低等;不会说的,老师适当点拔,从而学生在合作交流中不知不觉地完成了以下填空。
比较这一天下列两个城市间最低气温的高低(填"高于"或"低于")
广州_______上海;北京________上海;北京________哈尔滨;武汉________哈尔滨;武汉__________广州。
2、画一画:(1)把上述5个城市最低气温的数表示在数轴上,(2)观察这5个数在数轴上的位置,从中你发现了什么?
(3)温度的高低与相应的数在数轴上的位置有什么?
(通过学生自己动手操作,观察、思考,发现原点左边的数都是负数,原点右边的数都是正数;同时也发现5在0右边,5比0大;10在5右边,10比5大,初步感受在数轴上原点右边的两个数,右边的数总比左边的数大。教师趁机追问,原点左边的数也有这样的规律吗?从而激发学生探索知识的欲望,进一步验证了原点左边的数也有这样的规律。从而使学生亲身体验探索的乐趣,在探究中不知不觉获得了知识。)由小组讨论后,教师归纳得出结论:
在数轴上表示的两个数,右边的数总比左边的数大。
正数都大于零,负数都小于零,正数大于负数。
(二)应用新知,体验成功
1、练一练(师生共同完成例1后,学生完成随堂练习1)
例1:在数轴上表示数5,0,-4,-1,并比较它们的大小,将它们按从小到大的顺序用"<"号连接。(师生共同完成)
分析:本题意有几层含义?应分几步?
要点总结:小组讨论归纳,本题解题时的一般步骤:①画数轴②描点;③有序排列;④不等号连接。
随堂练习: P19 T1
2、做一做
(1)在数轴上表示下列各对数,并比较它们的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出图中各对数的绝对值,并比较它们的大小。
(3)由①、②从中你发现了什么?
(学生小组讨论后,代表站起来发言,口述自己组的发现,说明自己组发现的过程,逐步培养学生观察、归纳、用数学语言表达数学规律的能力。)
要点总结:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。
在学生讨论的基础上,由学生总结得出有理数大小的比较法则。
(1)正数都大于零,负数都小于零,正数大于负数。
(2)两个正数比较大小,绝对值大的数大。
(3)两个负数比较大小,绝对值大的数反而小。
3、师生共同完成例2后,学生完成随堂练习2、3、4。
例2比较下列每对数的大小,并说明理由:(师生共同完成)
(1)1与-10,(2)-0.001与0,(3)-8与+2;(4)-与-;(5)-(+)与-|-0.8|
分析:第(4)(5)题较难,第(4)题应先通分,第(5)题应先化简,再比较。同时在讲解时,要注意格式。
注:绝对值比较时,分母相同,分子大的数大;分子相同,则分母大的数反而小;分子分母都不相同时,则应先通分再比较,或把分子化相同再比较。
两个负数比较大小时的一般步骤:①求绝对值;②比较绝对值的大小;③比较负数的大小。
思考:还有别的方法吗?(分组讨论,积极思考)
4、想一想:我们有几种方法来判断有理数的大小?你认为它们各有什么特点?
由学生讨论后,得出比较有理数的大小共有两种方法,一种是法则,另一种是利用数轴,当两个数比较时一般选用第一种,当多个有理数比较大小时,一般选用第二种较好。
练一练:P19 T2、3、4
5、考考你:请你回答下列问题:
(1)有没有的有理数,有没有最小的有理数,为什么?
(2)有没有绝对值最小的有理数?若有,请把它写出来?
(3)在于-1.5且小于4.2的整数有_____个,它们分别是____。
(4)若a>0,b<0,a<|b|,则你能比较a、b、-a、-b这四个数的大小吗?(本题属提高题,不要求全体学生掌握)
(新颖的问题会激发学生的好奇心,通过合作交流,自主探究等活动,培养学生思维的习惯和数学语言的表达能力)
6、议一议,谈谈本节课你有哪些收获
(由师生共同完成本节课的小结)本节课主要学习了有理数大小比较的两种方法,一种是按照法则,两两比较,另一种是利用数轴,运用这种方法时,首先必须把要比较的数在数轴上表示出来,然后按照它们在数轴上的位置,从左到右(或从右到左)用"<"(或">")连接,这种方法在比较多个有理数大小时非常简便。
六、布置作业:P19 A组、B组
基础好的A、B两组都做
基础较差的同学选做A组。
人教版初中数学教案 篇七
教学目的:
(一)知识点目标:
1、了解正数和负数在实际生活中的应用。
2、深刻理解正数和负数是反映客观世界中具有相反意义的理。
3、进一步理解0的特殊意义。
(二)能力训练目标:
1、体会数学符号与对应的思想,用正、负数表示具有相反意义的量。
2、熟练地用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:能用正、负数表示具有相反意义的量。
教学难点:进一步理解负数、数0表示的量的意义。
教学方法:小组合作、师生互动。
教学过程:
创设问题情境,引入新课:分小组派代表,注意数学语言规范。
1、认真想一想,你能用学过的知识解决下列问题吗?
某零件的直径在图纸上注明是 ,单位是毫米,这样标注表示零件直径的标准尺寸是 毫米,加工要求直径可以是 毫米,最小可以是 毫米。
2、下列说法中正确的( )
A、带有“一”的数是负数; B、0℃表示没有温度;
C、0既可以看作是正数,也可以看作是负数。
D、0既不是正数,也不是负数。
[师]这节课我们就来继续认识正、负数及它们在生活中的实际意义,特别是数0。
讲授新课:
例1. 仔细找一找,找了具有相反意义的量:
甲队胜5场;零下6度;向南走50米;运进粮食40吨;乙队负4场;零上10度;向北走20米;支出1000元;收入3500元。
例2 (1)一个月内,小明的体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值;
(2)2001年下列国家的商品进出口总额比上年的变化情况是:
美国减少6.4%,德国增长1.3%,法国减少2.4%,
英国减少3.5%,意大利增长0.2%,中国增长7.5%。
写出这些国家2001年商品进出口总额的增长率。
例3. 下列各数中,哪些是正数,哪些是负数?哪些是正整数,哪些是负整数?哪些是正分数(小数),哪些是负分数(小数)?
例4. 小红从阿地出发向东走了3千米,记作+3千米,接着她又向西走3千米,那么小红距阿地多少千米?
复习巩固:练习:课本P6 练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1 的第3、6、7、8题。
活动与探究:海边的一段堤岸高出海平面12米,附近的一建筑物高出海平面50米,海里一潜水艇在海平面下30米处,现以海边堤岸为基准,将其记为0米,那么附近建筑物及潜水艇的高度各应如何表示?
课后反思:————
元二次方程的根与系数的关系教案 篇八
1、掌握一元二次方程的根与系数的关系并会初步应用。
2、培养学生分析、观察、归纳的能力和推理论证的能力。
3、渗透由特殊到一般,再由一般到特殊的认识事物的规律。
4、培养学生去发现规律的积极性及勇于探索的精神。
重点
根与系数的关系及其推导
难点
正确理解根与系数的关系。一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系。
一、复习引入
1、已知方程x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2、由上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.观察两式右边,分母相同,分子是-b+b2-4ac与-b-b2-4ac.两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1,x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
方程 x1 x2 x1+x2 x1•x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小结:根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p,x1•x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如ax2+bx+c=0(a≠0)的方程,可以先将二次项系数化为1,再利用上面的结论。
即:对于方程 ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1•x2=ca
(可以利用求根公式给出证明)
例1 不解方程,写出下列方程的两根和与两根积:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2 不解方程,检验下列方程的解是否正确?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程。(你有几种方法?)
例4 已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值。
变式一:已知方程x2-2kx-9=0的两根互为相反数,求k;
变式二:已知方程2x2-5x+k=0的两根互为倒数,求k.
三、课堂小结
1、根与系数的关系。
2、根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零。
四、作业布置
1、不解方程,写出下列方程的两根和与两根积。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一个根为1,求另一根及m的值。
3、已知方程x2+bx+6=0的一个根为-2,求另一根及b的值
人教版初中数学教案 篇九
一、知识与技能
1、能灵活列反比例函数表达式解决一些实际问题、
2、能综合利用物理杠杆知识、反比例函数的知识解决一些实际问题、
二、过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题、
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力、
三、情感态度与价值观
1、积极参与交流,并积极发表意见、
2、体验反比例函数是有效地描述物理世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具、
教学重点
掌握从物理问题中建构反比例函数模型、
教学难点
从实际问题中寻找变量之间的关系,关键是充分运用所学知识分析物理问题,建立函数模型,教学时注意分析过程,渗透数形结合的思想、
教具准备
多媒体课件、
教学过程
一、创设问题情境,引入新课
活动1
问属:在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用、下面的例子就是其中之一、
在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培、
(1)求I与R之间的函数关系式;
(2)当电流I=0.5时,求电阻R的值、
设计意图:
运用反比例函数解决物理学中的一些相关问题,提高各学科相互之间的综合应用能力、
师生行为:
可由学生独立思考,领会反比例函数在物理学中的综合应用、
教师应给“学困生”一点物理学知识的引导、
师:从题目中提供的信息看变量I与R之间的反比例函数关系,可设出其表达式,再由已知条件(I与R的一对对应值)得到字母系数k的值、
生:(1)解:设I=kR ∵R=5,I=2,于是
2=k5,所以k=10,∴I=10R、
(2)当I=0.5时,R=10I=100.5=20(欧姆)、
师:很好!“给我一个支点,我可以把地球撬动、”这是哪一位科学家的名言?这里蕴涵着什么样的原理呢?
生:这是古希腊科学家阿基米德的名言、
师:是的、公元前3世纪,古希腊科学家阿基米德发现了著名的`“杠杆定律”:若两物体与支点的距离反比于其重量,则杠杆平衡,通俗一点可以描述为;
阻力×阻力臂=动力×动力臂(如下图)
下面我们就来看一例子、
二、讲授新课
活动2
小伟欲用撬棍橇动一块大石头,已知阻力和阻力臂不变,分别为1200牛顿和0、5米、
(1)动力F与动力臂l有怎样的函数关系?当动力臂为1.5米时,撬动石头至少需要多大的力?
(2)若想使动力F不超过题(1)中所用力的一半,则动力臂至少要加长多少?
设计意图:
物理学中的很多量之间的变化是反比例函数关系、因此,在这儿又一次借助反比例函数的图象和性质解决一些物理学中的问题,即跨学科综合应用、
师生行为:
先由学生根据“杠杆定律”解决上述问题、
教师可引导学生揭示“杠杆乎衡”与“反比例函数”之间的关系、
教师在此活动中应重点关注:
①学生能否主动用“杠杆定律”中杠杆平衡的条件去理解实际问题,从而建立与反比例函数的关系;
②学生能否面对困难,认真思考,寻找解题的途径;
③学生能否积极主动地参与数学活动,对数学和物理有着浓厚的兴趣、
师:“撬动石头”就意味着达到了“杠杆平衡”,因此可用“杠杆定律”来解决此问题、
生:解:(1)根据“杠杆定律”有
Fl=1200×0.5、得F=600l
当l=1.5时,F=6001.5=400、
因此,撬动石头至少需要400牛顿的力、
(2)若想使动力F不超过题(1)中所用力的一半,即不超过200牛,根据“杠杆定律”有
Fl=600,l=600F、
当F=400×12=200时,l=600200=3、
3-1.5=1.5(米)
因此,若想用力不超过400牛顿的一半,则动力臂至少要如长1.5米、
生:也可用不等式来解,如下:
Fl=600,F=600l、
而F≤400×12=200时、
600l ≤200
l≥3、
所以l-1.5≥3-1.5=1.5、
即若想用力不超过400牛顿的一半,则动力臂至少要加长1.5米、
生:还可由函数图象,利用反比例函数的性质求出、
师:很棒!请同学们下去亲自画出图象完成,现在请同学们思考下列问题:
用反比例函数的知识解释:在我们使用橇棍时,为什么动力臂越长越省力?
生:因为阻力和阻力臂不变,设动力臂为l,动力为F,阻力×阻力臂=k(常数且k>0),所以根据“杠杆定理”得Fl=k,即F=kl (k为常数且k>0)
根据反比例函数的性质,当k>O时,在第一象限F随l的增大而减小,即动力臂越长越省力、
师:其实反比例函数在实际运用中非常广泛、例如在解决经济预算问题中的应用、
活动3
问题:某地上年度电价为0.8元,年用电量为1亿度,本年度计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0、4)元成反比例、又当x=0、65元时,y=0.8、(1)求y与x之间的函数关系式;(2)若每度电的成本价0.3元,电价调至0.6元,请你预算一下本年度电力部门的纯收人多少?
设计意图:
在生活中各部门,经常遇到经济预算等问题,有时关系到因素之间是反比例函数关系,对于此类问题我们往往由题目提供的信息得到变量之间的函数关系式,进而用函数关系式解决一个具体问题、
师生行为:
由学生先独立思考,然后小组内讨论完成、
教师应给予“学困生”以一定的帮助、
生:解:(1)∵y与x-0、4成反比例,∴设y=kx-0.4 (k≠0)、
把x=0.65,y=0.8代入y=kx-0.4,得
k0.65-0.4=0.8、
解得k=0.2,∴y=0.2x-0.4=15x-2
∴y与x之间的函数关系为y=15x-2
(2)根据题意,本年度电力部门的纯收入为
(0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(亿元)
答:本年度的纯收人为0.6亿元,师生共析:
(1)由题目提供的信息知y与(x-0.4)之间是反比例函数关系,把x-0.4看成一个变量,于是可设出表达式,再由题目的条件x=0.65时,y=0.8得出字母系数的值;
(2)纯收入=总收入-总成本、
三、巩固提高
活动4
一定质量的二氧化碳气体,其体积y(m3)是密度ρ(kg/m3)的反比例函数,请根据下图中的已知条件求出当密度ρ=1.1 kg/m3时二氧化碳气体的体积V的值、
设计意图:
进一步体现物理和反比例函数的关系、
师生行为
由学生独立完成,教师讲评、
师:若要求出ρ=1.1 kg/m3时,V的值,首先V和ρ的函数关系、
生:V和ρ的反比例函数关系为:V=990ρ、
生:当ρ=1.1kg/m3根据V=990ρ,得
V=990ρ=9901.1=900(m3)、
所以当密度ρ=1. 1 kg/m3时二氧化碳气体的气体为900m3、
四、课时小结
活动5
你对本节内容有哪些认识?重点掌握利用函数关系解实际问题,首先列出函数关系式,利用待定系数法求出解析式,再根据解析式解得、
设计意图:
这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功的体验机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足多样化的学习需要,从而使小结不流于形式而具有实效性、
师生行为:
学生可分小组活动,在小组内交流收获,然后由小组代表在全班交流、
教师组织学生小结、
反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础、用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系、
板书设计
略