1. 主页 > 范文大全 >

《正比例》教学设计(精选14篇)10-16-54

作为一位不辞辛劳的人民教师,时常需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写才好呢?如下是敬业的小编帮家人们整理的14篇正比例教学设计的相关范文,仅供参考,希望对大家有所帮助。

小学《正比例》的教学设计 篇一

《正比例》教学设计(精选14篇)10-16-54

教学要求:

1、使学生认识正比例关系的意义,理解,掌握成正比例量的变化规律及其特征,能依据正比例的意义间断两种相关联的量成不成正比例关系。

2、进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联量成不成正比例关系的方法,培养学生判断、推理的能力。

教学过程:

一、复习铺垫

1、说出下列每组数量之间的关系。

(1)速度时间路程

(2)单价数量总价

(3)工作效率工作时间工作总量

2、引入新课

我们已经学过的一些常见数量关系,每组数量中,数量之间是有联系的,存在着相依关系,这节课开始,我们就来研究和认识这种变化规律。今天,我们先认识正比例关系的意义。

二、教学新课

1、教学例1。

出示例1。让学生计算,在课本上填表。

让学生观察表里两种量变化的数据,思考。

(1)表里有哪两种数量,这两种数量是怎样变化的?

(2)路程和时间相对应数值的比的比值各是多少?这两种量变化有什么规律?

引导学生进行讨论。

提问:这里比值50是什么数量?(谁能说出它的数量关系式?)

想一想,这个式子表示的是什么意思?

2、教学例2

出示例2和想一想

要求学生按刚才学习例1的方法学习例2,然后把你学习中的发现综合起来告诉大家。

学生观察思考后,指名回答。然后再提问,这两种数量的变化规律是什么?你是怎样发现的?

比值1.6是什么数量,你能用数量关系式表示出来吗?

谁来说说这个式子表示的意思?

3、概括正比例的意义。

像例1、例2里这样的两种相关联的量是怎样的关系呢?请同学样看课本第40页最后一节。

4、具体认识

(1)提问:例1里有哪两种相关联的量?这两种量成正比例关系吗?为什么?

例2里的两种量是不是成正比例的量?为什么?

(2)做练习八第1题。

5、教学例3

出示例3,让学生思考

提问:怎样判断是不是成正比例?

请同学们看一看例3,书上怎样判断的,我们说得对不对。

强调:关键是列出关系式,看是不是比值一定。

三、巩固练习

1、做练一练第1题。

指名学生口答,说明理由。

2、做练一练第2题。

指名口答,并要求说明理由。

3、做练习八第2题(小黑板)

让学生把成正比例关系的先勾出来。

指名口答,选择几题让学生说一说怎样想的?

四、课堂小结

这节课学习了什么内容?正比例关系的意义是什么?用怎样的式子表示Y和X这两种相关的量成正比例?判断两种相关联的量是不是成正比例,关键看什么?

五、家庭作业。

六年级数学《正比例》教学设计 篇二

教学目标:

1.初步理解正比例的意义,会根据正比例的意义判断两种相关联的量是不是成正比例。

2.使学生在认识正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模式,进一步培养观察能力和发现规律的能力。

教学重点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

教学难点:

会根据正比例的意义判断两种相关联的量是不是成正比例。

预习指导:

一、自学教材。

阅读教材第62~63页。

二、检查学习。

1.怎样两个量成正比例?

2.完成"试一试"。

教学准备:

课件和口算题。

教学过程:

一、导入

谈话:通过将近六年的学习,我们已经了解了一些数量之间的关系,例如行程问题中的速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点为,更深入地研究数量之间的关系。什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

二、教学例11课件出示例1的表

⑴看一看,表中有哪两种量?这两种量的数值是怎样变化的?

⑵表中有路程和时间这两种量,通过观察数据我们可以发现这两种量是有关联的,时间变化,路程也随着变化。

2.那么这两种量的变化有没有什么规律呢?下面我们来作进一步的研究。建议大家可以写出几组相对应的路程和时间的比,看一看你有什么发现。

3.我们可以写出这么几组路程和对应时间的比。

⑴发现了它们的比值都是80,大家想一想,这个比值80表示什么呢?这个规律能不能用一个式子来表示?

⑵这个比值80就表示汽车行驶的速度,从上面可以看出这个速度是相同的,一定的,因此可以用这样一个式子来表示这个规律

⑶同学们,在这个题目中,路程和时间是两种相关联的量,时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

课件出示:路程和时间成正比例。

⑷现在你能完整地说一说表中路程和时间成什么关系吗?

4.刚才我们初步认识了正比例的关系,接着我们继续来看下面这个题目。

⑴课件出示"试一试"

⑵请大家先根据题目里的信息把表中的数据填完整,然后说一说总价是随着哪个量的变化而变化的?

课件出示表中的数据。

⑶从表中我们可以看出铅笔的总价是随着购买数量的变化而变化的。

集体交流:

⑷我们先来看第2个问题,可以写出这么几组对应的总价和数量的。比=0.3、=0.3…它们的比值相等,你写对了吗?

⑸再看第3个问题,这个比值表示的是铅笔的单价,我们可以用总价:数量=单价(一定)这个式子来表示三者之间的关系。

小结:铅笔的总价和数量成正比例,因为总价和数量是两种相关联的量,数量变化,总价也随着变化,当总价和是对应数量的比的比值总是一定(也就是单价一定)时,我们就说铅笔的总价和购买的数量成正比例,铅笔的总价和购买的数量是成正比例的量。

⑹你能完整地这样说给你的同桌听一听吗?

⑺同学们,我们通过以上的两个例子认识了正比例的关系,想一想,如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,那么正比例的关系可以用怎样的式子表示?

课件出示课题。

⑻回顾一下,我们是根据什么来判断两种数量能成正比例的?

指出:我们可以根据两种相关联的量的比值是不是一定来判断两种数量能不能成正比例。

5.完成"练一练"

⑴请大家根据表中的数据判断生产零件的数量和时间成什么比例?并说说为什么?

⑵生产零件的数量和时间成正比例,因为生产零件的数量和时间是两种相关联的量,时间变化,零件的数量也随着变化,当生产零件的数量和对应时间的比的比值总是一定(也就是每小时生产零件的个数一定)时,我们就说生产零件的数量和时间成正比例,生产零件的数量和时间是成正比例的量。

小结:教师:同学们,今天我们学习了正比例的意义,你知道判断两种相关联的量是否成正比例的方法了吗?

三、练习

1.完成练习十三第1题。

请大家继续看课本66页第1题

2.完成练习十三第2题

⑴继续看第2题,请你判断,同一时间,物体的高度和影长成正比例吗?为什么?

⑵同一时间,物体的高度和影长成正比例,因为每次物体的高度和它对应的影长的比值都是三分之五,是一定的。

3.完成练习十三第3题(课件出示题目)

⑴课件出示放大后的三个正方形、

⑵大家看一看,你是这样画的吗?

⑶接着请同学们对照表格计算出放大后每个正方形的周长和面积。

校对学生做的情况。

⑷请大家根据表中的数据讨论下面两个问题。

①正方形的周长与边长成正比例吗?为什么?

②正方形的面积与边长成正比例吗?为什么?

四、总结。

通过计算正方形周长与边长的比值,我们可以判断正方形的周长与边长成正比例,因为它们的每组比值都相等,都是4;同样通过计算正方形面积与边长的比值,我们可以判断它们不成正比例,因为它们每组的比值是不相同的,也就是说是不一定的。

板书设计:

正比例的意义

路程和时间是两种相关联的量,

时间变化,路程也随着变化,当路程和对应时间的比的比值总是一定(也就是速度一定)时,

我们说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。

《正比例》教学设计 篇三

教学目标

1、使学生理解正比例的意义、

2、能根据正比例的意义判断两种量是不是成正比例、

3、培养学生的抽象概括能力和分析判断能力、

教学重点

使学生理解正比例的意义、

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念、

教学过程

一、复习准备

口答(课件演示:成正比例的'量)

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、新授教学

(一)导入新课

这些都是我们已经学过的常见的数量关系、这节课,我们继续研究这些数量关系中的一些特征、

(二)教学例1、(课件演示:成正比例的量)

1、一列火车1小时行驶90千米,2小时行驶180千米,3小时行驶270千米,4小时行驶360千米,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米

2、出示下表,并根据上述内容填表、

小学《正比例》的教学设计 篇四

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1。复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书: =速度。

②已知总价和数量,怎样求单价?

板书: =单价。

③已知工作总量和工作时间,怎样求工作效率?

板书: =工作效率。

2。引入课题:这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1。 教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的。总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是 =速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1) 比值表示每小时行驶多少km。

(2)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;

②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

《正比例》教学设计 篇五

教学内容:

苏教版义务教育课程标准实验教科书第94页《正比例和反比例》“练习与实践”的第1-6题。

教材学情分析:

《正比例和反比例》复习教材上分为两个部分,“整理与反思”部分主要复习比的意义和性质,以及成正比例和反比例的量。教材先引导学生结合具体的例子回忆并整理比的意义、基本性质以及比的应用,再用填空的形式帮助学生进一步明确比与分数、除法的关系。在此基础上,要求学生说说比的基本性质与分数的基本性质、商不变的规律有什么联系和区别。这样的比较有利于学生体会比的基本性质与分数的基本性质、商不变的规律的一致性,有利于学生加深对比与分数、除法关系的理解,促进学生对数学知识的灵活运用。接下来,教材重点引导学生交流判断两种量是否成比例、成什么比例的思考方法,并要求学生找出一些生活中成正比例或反比例量的例子,帮助学生进一步认识成正比例和反比例的量,感受正比例和反比例是描述数量关系及其变化规律的又一种有效的数学模型。

“练习与实践”第1题让学生写出本班的男、女生人数,再要求学生分别写出男生和女生人数,在要求学生分别写出男生和女生人数的比以及女生和全班人数的比,帮助学生在练习中进一步理解比的意义,掌握用比表示数量之间关系的基本方法;“练习与实践”第2题让学生先分小组量一量人体有关部分的`长度,再按要求写出部分长度的比,再求出比值。然后启发学生通过进一步的交流和比较,发现一些有趣的现象。这样的活动,既有较强的趣味性,又能较好体现比的应用价值,有利于吸引学生积极主动参与活动,并在活动中获得一些新的认识;“练习与实践”第3题结合直观的图片,先让学生按要求写出一些比,再估计写出的这些比中哪两个比可以组成比例,并通过计算加以验算。这里的估计即可以依据每一个比中前项和后项之间的关系,也可以依据相应长方形图片的形状,因而这个活动既能帮助学生复习比例的意义,又有利于学生进一步体会图形的放大和缩小与比例的内在联系;“练习与实践”第4题是解比例的练习。练习的目的主要是让学生进一步理解比例的基本性质,并掌握解比例的基本方法;“练习与实践”第5题提供了对我国东、西部地区各类土地资源面积进行比较的百分数,要求学生把其中一些用百分数表示的数量关系改写成用比表示,并交流从这组数据中所获得的其他信息。通过练习,可以使学生进一步体会比和百分数在表示数量关系方面的各自特点,加深对比与百分数关系的理解;“练习与实践”第6题先让学生看图写出一个房间中两种地砖面积的比,再让学生联系这个房间算出这两种地砖的面积,帮助学生进一步理解比的意义,掌握解决按比例分配的实际问题的基本方法。

教学目标:

⑴使学生进一步理解比的意义和基本性质,理解比与分数、除法的关系,能根据要求求比值、化简比;理解比例的意义和基本性质,会解比例;认识成正比例和反比例的量,感受表示数量关系及其变化规律的不同数学模型;能运用比和比例的知识解决一些简单实际问题,丰富解决问题策略,积累解决问题的经验。

⑵通过量一量等操作活动,吸引学生积极主动参与,感受比的应用价值,在活动中获得一些新的认识;

⑶使学生在系统复习的过程中,体验与同学合作交流以及获取知识的乐趣,增进对数学学习的积极情感,增强学好数学的信心。

教学重点:进一步理解比和比例的一些知识。

教学难点:感受比的应用价值,在活动中获得一些新的认识。

教学具准备:

教学流程:

一、自主学习,完成练习。

⑴揭示课题。

教师谈话:今天我们复习《正比例和反比例》。板书课题——“正比例和反比例”。

⑵自主练习。

教师谈话:用5-8分钟的时间阅读课本94页的内容,完成“练习与实践”1-6题,其中“练习与实践”第2题作为课前活动,“练习与实践”第1题本班的男女生人数板书在黑板上,男生24人、女生27人。

学生自主练习,教师巡视。

二、交流讨论,梳理知识。

⑴整理比的知识。

交流“练习与实践”第1题的答案,并矫正;理解“男生和女生人数的比是8:9”的意思,一般表示男生是女生人数的8/9,男生和女生人数是除法关系;“男生和女生人数的比是8:9”由比24:27化简而来,回忆比的基本性质;体会“女生和全班人数的比是9:17”答案由来的多种途径。

⑵感受生活中的比例。

交流头长和身高的比,让多名学生将自己头长和身高的比和比值板书在黑板上;指导学生取近似值,整理答案,再说说自己的发现,比值一般很接近的,感受生活中的比例。

⑶整理比例的知识。

交流“练习与实践”第3题的答案,并矫正;根据写成的比例理解比例的意义,根据图形的放大或缩小沟通比的基本性质和分数基本性质的一致性;根据图形的放大或缩小体会和比例的关系。

⑷整理解比例的知识。

交流“练习与实践”第4题的答案,并矫正;理解比例的基本性质,以及在解比例中运用,掌握解比例的方法。

⑸解决实际问题。

交流“练习与实践”第5题,先说说对表中百分数的理解,交流我国东西部各自的特点;掌握把两个数量的百分数关系改写成比的一般方法,用对应的分数表示前项和后项,再化简。交流“练习与实践”第6题,说说得到两种地砖铺地面积比的思考过程,因为每块地砖的大小是相同的,所以可以转化成块数来写出面积的比;交流问题2的解决过程,体会比的应用。

⑹谈谈本节课的收获。

《正比例》的教学设计 篇六

【教学内容】

正比例

【教学目标】

使学生理解正比例的意义,会正确判断成正比例的量。

【重点难点】

重点:理解正比例的意义。

难点:正确判断两个量是否成正比例的关系。

【教学准备】

投影仪。

【复习导入】

1、复习引入。

用投影仪逐一出示下面的题目,让学生回答。

①已知路程和时间,怎样求速度?

板书:=速度。

②已知总价和数量,怎样求单价?

板书:=单价。

③已知工作总量和工作时间,怎样求工作效率?

板书:=工作效率。

2、引入课题:

这是我们过去学过的一些常见的数量关系。这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。板书课题:成正比例的量。

【新课讲授】

1、教学例1。

教师用投影仪出示例1的图和表格。

学生观察上表并讨论问题。

(1)铅笔的总价和数量有关系吗?

(2)铅笔的总价是怎样随着数量的变化而变化的?

(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。

根据观察,学生可能会说出:

①铅笔的总价随着数量变化,它们是两种相关联的量。

②数量增加,总价也增加;数量降低,总价也减少。

③铅笔的总价和数量的比值总是一定的,即单价一定。

教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。

2、教师出示:一列火车行驶的时间和路程如下表。

引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?

组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。

教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。

3、归纳概括正比例关系。

①组织学生分小组讨论,上面两个例子有什么共同规律?

②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。

学生说一说是怎么理解正比例关系的。

要求学生把握三个要素:

第一:两种相关联的量。

第二:其中一个量增加,另一个量也增加;一个量减少,另一个量也减少。

第三:两个量的比值一定。

4、用字母表示正比例的关系。

教师:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),比例关系可以用这样的式子表示: (一定)

5、教师:想一想,生活中还有哪些成正比例的量?

学生举例说明并说出理由如:长方形的宽一定,面积和长成正比例;每袋牛奶质量一定,牛奶袋数和总质量成正比例;衣服的单价一定,购买衣服的数量和应付钱数成正比例。地砖的面积一定,教室地板面积和地砖块数成正比例;

【课堂作业】

完成教材第46页的“做一做”(1)~(3)。

答案:

(1)比值表示每小时行驶多少km。

(2)成正比例。理由:路程随着时间的变化而变化。

①时间增加,路程也增加,时间减少,路程也随着减少;

②路程和时间的比值(速度)一定。

【课堂小结】

通过这节课的学习,你有什么收获?

【课后作业】

完成练习册中本课时的练习。

《正比例》教学设计 篇七

【课题】:

人教版小学数学六年级(下)《正比例的好处》

【教材简解】:

正比例的好≮www.kaoyantv.com≯处是小学数学六年级(下)第三单元的教学资料。这部分知识是在学生具有比和比例的知识以及认识常见数量关系的基础上编排的,透过对两个数量持续商必须的变化,理解正比例的好处,初步渗透函数的思想。

【目标预设】:

1、知识潜力:使学生认识正比例的好处,理解、掌握成正比例量的变化规律及其特征。

2、过程与方法:能根据正比例的好处决定两种相关联的量成不成正比例关系。

3、情感态度与价值观:进一步培养学生观察、分析、综合等潜力;培养学生的抽象概括潜力和分析决定潜力。

【重点、难点】:

重点:使学生理解正比例的好处。

难点:引导学生透过观察、思考发现两种相关联的量的变化规律(即它们相对应的数的比值必须),从而概括出正比例关系的概念。

【设计理念】:

本节课的教学设计遵循以下几点设计理念:

1、抽象实际事例中的数量变化规律,构成正比例的概念。

例1是让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是必须,能够说路程和时间成正比例,它们是成正比例的量,学生在那里首次感知了正比例关系。“试一试”是在另一组数量关系中继续感知正比例关系。使得学生在上面两个实例中感知了正比例的具体含义,然后教材再抽象概括出正比例的好处,这一环节是概念构成的重要环节,也是发展数学思考的极好机会。

2、用图像直观表达正比例关系。

例2是按照《课程标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。

第一步认识图像上的点,说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。

第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。

第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。

【设计思路】:

本课教学设计我从生活中一些常见的数量关系入手,复习一些数量之间的相互关系,打破了传统的正比例好处教学“复习 ——教学例1——教学例2——揭示概念——巩固练习”的教学模式,取而代之是让学生充分发挥学习的用心性,以及在学习过程中的合作探究潜力,进而总结出新知的尝试,本节课的教学依据“自学——反馈——探究——应用”这一课堂基本模式设计,结合新课程理念让学生在自主探究的氛围下学习,以求在理想的。教学过程中产生理想的学习效果。

【教学过程】:

一、复习准备:

口答(课件演示)

1、已知路程和时间,怎样求速度?

2、已知总价和数量,怎样求单价?

3、已知工作总量和工作时间,怎样求工作效率?

二、新授教学:

(一)自学

课件出示以下两组自学材料:

1、一辆汽车行驶的时间和路程如下

时间(比)

1

2

3

4

5

6

……

路程(千米)

50

100

150

……

观察上表,填写表格并思考下列问题:

(1)表中有哪两种相关联的量?

(2)路程是怎样随着时间变化而变化的?

(3)相对应的路程和时间的比分别是什么?比值是多少?

2、一种圆珠笔,枝数和总价如下表

数量(枝)

1

2

3

4

5

6

……

总价(元)

1.6

3.2

4.8

……

观察上表,填写表格并思考下列问题:

(1)表中有哪两种相关联的量?

(2)总价是怎样随着数量变化而变化的?

(3)相对应的总价和数量的比分别是什么?比值是多少?

【设计意图:以学生常见的数量关系入手,以表格并附思考问题的形式出现,激起学生的认知冲突,激发学生的学习兴趣和强烈的求知欲,让学生边填边思,为学生用心参与后面的学习活动打下基础。】

(二)反馈:

师:在填表过程中,你发现了什么?每一组材料中的两种量有什么关系?它们的变化有规律吗?

1、学生自由说,小组内总结。(小组汇报,教师小结。)

小结:像这样表里的两种量,一个量变化,另一个量也随着它的变化而变化的,这两种量就是相关联的量。

【根据学生反馈板书】:

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是必须的

(说明:相对应的两个数的比的比值都一样或固定不变,在数学上叫做“必须”)

2、概括正比例的好处。

(1)师:刚才同学们透过填表、交流,明白了时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是必须的。总价和数量也是两种相关联的量,总价随着数量的变化而变化。数量扩大,总价随着扩大;数量缩小,总价也随着缩小。它们扩大、缩小的规律是:总价和数量的比的比值总是必须的。这样我们就能够用数量关系式来表示:

【板书】:路程÷时间=速度(必须)总价÷数量=单价(必须)

问:谁来说说这两个数量关系式的意思?

(2)小结:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)必须,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是我们这天要学习的资料。

【板书课题】:成正比例的量

追问:决定两种相关联的量成不成正比例的关键是什么?(比值是不是必须)

(3)字母表达关系式。

问:如果字母y和x分别表示两种相关联的量,用k表示它们的比值,正比例关系怎样用字母表示出来?

【板书】:=k(必须)

(4)质疑。

师:根据正比例的好处以及表示正比例关系的式子想一想:构成正比例关系的两种量务必具备哪些条件?

【设计意图:透过学生自学两例“正比例”好处教学素材的反馈,让学生感悟其基本特征,从而由两个具体数学现象归纳抽象出数学结论,让学生经历这个过程,丰富他们的数学体验,实现“用教材教”而不是“教教材”这一新课程理念的转变。】

(三)探究:

1、课件出示表格

时间/时

1

2

3

4

5

6

……

路程/千米

80

160

240

320

400

480

……

根据表中列出的两种量,教师在黑板上分别画出横轴和纵轴。

问:你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

2、学生尝试画出正比例的图像。

3、展示、纠错。

强调:每个点都就应表示路程和时间的一组对应数值。

4、回答例2图像下面的问题,重点弄清:

(1)说出每个点表示的含义。

(2)为什么所描的点在一条直线上?

(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎样看的?

借助直观的图像理解两种量同时扩大或缩小的变化规律。

【设计意图:透过学生小组讨论、总结、汇报、师生交流后概括出的数学新知,再透过用图像直观表达正比例关系,进一步验证学习正比例关系的两个量用图像表示的状况,以帮忙学生构建立体的概念模型。师生的平等交流与探讨,激起情感共鸣,增强课堂的活力。】

(四)应用:

1、决定下面每题中两种量是不是成正比例,并说明理由。

(1)苹果的单价必须,购买苹果的数量和总价。

(2)长方形的长必须,它的宽的面积。

(3)每小时织布米数必须,织布总米数和时间。

(4)小新跳高的高度和他的身高。

学生独立思考,指名回答,课件演示核对。

2、完成练习十三第2题。

先让学生独立决定,再指名学生有条理地说明决定的理由。

3、完成练习十三第3题。

先让学生说出把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米?再画一画。

分别求出每个图形的周长和面积,并填写表格。

讨论、明确:只有当两种相关联的量的比值必须时,它们才成正比例。

【设计意图:给学生练习的空间,加强学生对成正比例量的认识及正比例好处的理解,在对知识的实际应用中获得成功的体验,实现对新知的巩固。】

4、完成练习。

学生先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。(组织同桌讨论和交流)

三、课堂小结:

师:透过这节课的学习,你们都明白了什么?怎样决定两种量是否成正比例?

四、课堂延伸:

思考:正方形的边长和面积成正比例吗?

【设计意图:知识的拓展,能激活学生的思维,培养学生多角度思考问题的潜力,给学生更广的思维空间,充分发挥学生的潜能,使学生获得更好的发展。】

五、课外作业:

完成练习十三第1、4题。

六、板书设计:

正比例的好处

①两种相关联的量

②一种量扩大(或缩小)另一种量也扩大(或缩小)

③两种量中相对应的两个量的比的比值是必须的

路程÷时间=速度(必须)总价÷数量=单价(必须)

=k(必须)

《正比例》教学设计 篇八

教学目标:

1 、使学生理解什么是相关联的量。

2、 掌握正比例的意义及字母表达式。

3、 学会判断两个量是否成正比例关系。

教学过程:

一、导入

师(板书:关联):知道关联是什么意思吗?

生:指事物之间有联系。

生:也可以指事物之间相互影响。

师:对,关联就是指事物之间发生牵连和影响。

师:能举一些生活中相互关联的例子吗?

生:天气热了,我们身上穿的衣服就少一些;天气冷了,穿的衣服就会多一些,气温与我们穿的衣服是相关联的。

生:我的考试分数多了,爸爸妈妈就很高兴;如果少了,他们的脸上就会阴云密布,所以我的考试分数与家长的脸色也是相关联的。(其他学生大笑)

生:我想姚明打球时,姚明的动作与防守他的对方队员的动作也是相关联的。,即姚明怎么动,对方总有一个相应的对策,不可能永远不变。

这时,一名学生干脆带着他的同桌走到讲台上,两个人当着全班学生的面,做起了学生经常玩的推手游戏,即一人推手,另一人立刻向后闪开。然后这位学生说:“我们刚才的动作也是相关联的。”

生:上星期,我们班举行智力竞赛,每个小组每答对一题就得到10分,答对两题得到20分……答对的题目越多,分数也就越高。因此,我认为答对的题目与最后的成绩也是相关联的。

二、新授

师:好一个答对的题目与最后的成绩相关联!我们把它们的情况列成下面的表格,可以吗?

师:从这个表格中。你还知道什么?

生:答对一题得10分,答对两题得20分,答对三题得30分……

师:表中有哪两个量?它们的关系怎样?

生:答对的题目与最后的成绩,它们是两个相关联的量。

师:你们能够从中发现什么规律?

生:从左向右看,答对的题目越多,分数就越高;从右向左看,答对的题目越少,成绩就越低。

师:还能发现什么呢?

生:答对的次数扩大多少倍,得分也随着扩大多少倍;反之,答对的次数缩小多少倍,得分也随着缩小多少倍。

师(小结):也就是说,成绩随着答对的次数变化而变化,像这样的两个量也叫做相关联的量。

师:你能在这两种量中,找到一组对应的数吗?谁能说说在成绩和答对的次数两种量中,相对应的数的比吗?比值是多少?

(随着学生的回答,师板书:10/1=10、20/2=10、30/3=10、40/4=10……)

师:刚才这位同学在算出比值的时候,你们发现了什么?

生:不管怎样,它们的比值不变。

师:这个比值实际上就是什么呀?(板书:每题的分数)

师:你能用一个关系式表示吗?

板书关系式:成绩/答对的题目=每题的分数(一定)

师:我们再来看一道题目。请每个小组的小组长,将桌上信封中的信息单分给每一位同学。同学们可以根据上面的四个问题进行分析,在小组内讨论交流。如果你们遇到了什么问题,可以举手,老师非常乐意帮助你们。(投影出示例1)

1、表中有( )和( )两种量。

2、路程是怎样随着时间的变化而变化的?

3、任意写出三个相对应的路程和时间的比,并算出它们的比值。

4、比值实际上表示( ),请用式子表示它们的关系。

(学生交流汇报,师板书关系式)

师(指着刚刚学习的两个表格):这是我们刚才分析过的两个表,它们有什么共同点吗?(板书:两个相关联的量)它们之间有什么关系呢?

(结合学生的发言,教师逐一板书,最后由学生通过看书,归纳出正比例的意义,由此完成概念教学)

《正比例》优秀教案 篇九

教学目标:

1、知道与正比例函数的意义.

2、能写出实际问题中正比例关系与关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解.

教学难点:根据具体条件求与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.

一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

《正比例》优秀教案 篇十

教学目标

1、使学生理解正比例的意义.

2、能根据正比例的意义判断两种量是不是成正比例.

3、培养学生的抽象概括能力和分析判断能力.

4、使学生理解正比例的意义.

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,即它们相对应的数的比值一定,从而概括出正比例关系的概念.

教学过程

一、复习

出示下面的题目,让学生回答..已知路程和时间,怎样求速度?板书: =速度

2.已知总价和数量,怎样求单价?板书:=单价

3.已知工作总量和工作时间,怎样求工作效率?板书:=工作效率

4.已知总产量和公顷数,怎样求公顷产量?板书:=公顷产量

二、导入新课

教师:这是我们过去学过的一些常见的数量关系.这节课我们进一步来研究这些数量关系中的一些特征,首先来研究这些数量之间的正比例关系.(板书课题:正比例的意义.)

三、新课

1、教学例1.

用小黑板出示例1:一列火车行驶的时间和所行的路程如下表;

时间(时) 1 2 3 4 5 6 7 8

路程(千米) 90 180 270 360 450 540 630 720

提问:

表中有哪几种量?

当时间是1小时时,路程是多少?当时间是2小时时,路程又是多少?

这说明时间这种量变化了,路程这种量怎么样了?(也变化了.)

教师说明:像这样,一种量变化,另一种量也随着变化,我们就说这两种量是两种相关联的量(板书:两种相关联的量).

时间和路程是两种相关联的量,路程是怎样随着时间变化而变化的呢?

让每一小组(8个小组)的同学选一组相对应的数据,计算出它们的比值.教师板书出来:=90,=90,=90,=90,

让学生观察这些比和它们的比值,看有什么规律.教师板书:相对应的两个数的比值(也就是商)一定.

比值90,实际上是火车的什么?你能将这些式子所表示的意义写成一个关系式吗?板书:=速度(一定)

教师小结:通过刚才的观察和分析,我们知道路程和时间是两种什么样的量?(两种相关联的量.)路程和时间这两种量的变化规律是什么呢?〔路程和时间的比的比值(速度)总是一定的.〕

2、教学例2.

出示例2:在布店的柜台上,有像下面一张写着某种花布的米数和总价的表.

数量(米) 1 2 3 4 5 6 7

总价(元) 8。2 16。4 24。6 32。8 41。0 49。2 57。4

让学生观察上表,并回答下面的问题:

(1)表中有哪两种量?

(2)米数扩大,总价怎样?米数缩小,总价怎样?

(3)相对应的总价和米数的比各是多少?比值是多少?

然后进一步问:

这个比值实际上是什么?你能用一个关系式表示它们的关系吗?板书:=单价(一定)

教师小结:通过刚才的思考和分析,我们知道总价和米数也是两种相关联的量,总价是随着米数的变化而变化的,米数扩大,总价随着扩大;米数缩小,总价也随着缩小.它们扩大、缩小的规律是:总价和米数的比的比值总是一定的.

3、抽象概括正比例的意义.

教师:请同学们比较一下刚才这两个例题,回答下面的问题:

(1)都有几种量?

(2)这两种量有没有关系?

(3)这两种量的比值都是怎样的?

教师小结:通过比较,我们看出上面两个例题,有一些共同特点:都有两种相关联的量,一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的比值(也就是商)一定.像这样的两种量我们就把它们叫做成正比例的量,它们的关系叫做正比例关系.

最后教师提出:如果我们用字母x,y表示两种相关联的量,用字母k表示它们的比值,你能将正比例关系用字母表示出来吗?教师板书

4、教学例3.

出示例3:每袋面粉的重量一定,面粉的总重量和袋数是不是成正比例?

教师引导:

面粉的总重量和袋数是不是相关联的量?

面粉的总重量和袋数有什么关系?它们的比的比值是什么?这个比值是否一定?板书:=每袋面粉的重量(一定)

已知每袋面粉的重量一定,就是面粉的总重量和袋数的比的比值是一定的,所以面粉的总重量和袋数成正比例.

5、巩固练习.

让学生试做第13页做一做中的题目.其中(3)要求学生说明这个比值所表示的意义,学生说成是生产效率和每天生产的吨数都可以

四、课堂练习

《正比例》教学设计 篇十一

【教学内容】

《义教课标实验教科书数学》(人教版)六年级下册第39-41页成正比例的量。

【教学目标】

1、使学生理解正比例的意义,会正确判断成正比例的量。

2、使学生了解表示成正比例的量的图像特征,并能根据图像解决有关简单问题。

【教学重点】

正比例的意义。

【教学难点】

正确判断两个量是否成正比例的关系。

【教学准备】

多媒体课件

【自学内容】

见预习作业

【教学预设】

一、自学反馈

1、揭题:今天这节课,我们一起学习成正比例的量。板书:成正比例的量

2、通过自学,你能说说什么叫做成正比例的量?

3、你是怎样理解成正比例的量的含义的'?

4、在现实生活中,我们常常遇到两种相关联的量的变化情况,其中一种量变化,另一种量也随着变化,你以举出一些这样的例子吗?

在教师的引导下,学生会举出一些简单的例子。

二、关键点拨

1、正比例的意义

(1)出示表格。

高度/㎝24681012

体积/㎝350100150200250300

底面积/㎝2

问:你有什么发现?

学生不难发现:杯子的底面积不变,是25平方厘米。

板书:

教师:体积与高度的比值一定。

(2)说明正比例的意义。

因为杯子的底面积一定,所以水的体积随着高度的变化而变化。水的高度增加,体积也相应增加,水的高度降低,体积也相应减少,而且水的体积和高度的比值一定。

板书出示:像这样,两种相关联的量,一种量变化,另一种子量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种理就叫做成正比例的量,它们的关系叫做正比例关系。

(3)用字母表示。

如果用字母X和Y表示两种相关联的量,用K表示它们的比值(一定),比例关系可以用正的式子表示:

2、判断正比例关系:下面哪些是成正比例的两个量?

长方形的宽一定,面积和长成正比例。

每袋牛奶质量一定,牛奶袋数和总质量成正比例。

衣服的单价一不定期,购买衣服的数量和应付钱数成正比例。

地砖的面积一定,教室地板面积和地砖块数成正比例。

三、巩固练习

1、学生独立完成例2后反馈交流。

(1)从图中你发现了什么?

这些点都在同一条直线上。

(2)看图回答问题。

①如果杯中水的高度是7㎝,那么水的体积是多少?

②体积是225㎝3的水,杯里水面高度是多少?

③杯中水的高度是14㎝,那么水的体积是多少?描出这一对应的点是否在直线上?

(3)你还能提出什么问题?有什么体会?

2、做一做。

过程要求:

(1)读一读表中的数据,写出几组路程和时间的比,说一说比值表示什么?

(2)表中的路程和时间成正比例吗?为什么?

(3)在图中描出表示路程和时间的点,并连接起来。有什么发现?所描的点在一条直线上。

(4)行驶120KM大约要用多少时间?

(5)你还能提出什么问题?

3、独立完成第44页练习七第1、2题。

4、判断并说明理由。

(1)圆的周长和直径成正比例。

(2)圆的周长和半径成正比例。

(3)圆的面积和半径成正比例。

四、分享收获畅谈感想

这节课,你有什么收获?听课随想

《正比例》教学设计 篇十二

教学资料:

北师大版小学数学六年级下册《正比例》

教学目标:

1、结合丰富的事例,认识正比例。

2、掌握成正比例变化的量的变化规律及其特征。

3、能根据正比例的好处,决定两个相关联的量是不是成正比例。

教学重点:

认识正比例的好处和怎样决定两个变化的量是不是成正比例。

教学难点:

决定两个变化的量是不是成正比例。

教具准备:

课件

教学过程:

一、导入新课:

出示:路程、单价、正方形的边长……

根据上面的某个量,你能想到些量?为什么?

在我们的生活中象这样的一个量随着另一个量的变化的例子还有很多很多,这天我们就继续来研究这些相互依靠的变量间的关系。

二、新课探究:

(一)、活动一:初步感受正比例关系。

1、课件出示正方形周长与边长、面积与边长的变化状况:

(1)请把表格填写完整。

(2)观察表格,你能发现什么规律?

(群众填表后,独立观察,发现规律,

2、组织学生交流发现的规律,引导学生比较两个规律的异同点。

3、小结:正方形的周长和面积虽然都是随着边长的增加而增加,但这两个规律又有一个不同点,在变化的过程中,正方形的周长与边长的比值是不变的',都是4,而正方形的面积与边长的比值是一向在变化的。

所以两个相互依靠的变量之间的关系是不一样的。

(二)、活动二:结合实例体会正比例的好处:

1、课件出示:

(1)将表格填完整。

(2)从表格中你能发现什么规律?

(以小组为单位,选取一个情境进行研究。)

2、交流汇报:

(三)、活动三:揭示正比例的好处。

1、这2规律有什么共同点?

教师随着学生的回答板书:

都是一个量随着另一个量的变化而变化,并且这两个变量所对应的数的比值持续不变。

2、教师揭示正比例的含义。

像这样两个相关联的量,一个量随着另一个量的变化而变化,并且两个量的比值不变,这两个量就成正比例。(教师随着板书完整。)

3、结合实例说明:

表一中路程随着时间的变化而变化,并且路程和时间的比值是不变的,所以路程和时间成正比例。

学生说一说表二的两个量。

4、用字母表示出正比例关系。

如果我们用X、Y表示两个变化的量,用K表示它们的比值,成正比例的两个变量之间的关系能够怎样用式子表示?

(四)、活动四:决定两个量是不是成正比例的量。

1、出示活动一中的表格:

正方形的周长与边长是不是成正比例的量?正方形的面积与边长是不是成正比例的量?为什么?

学生自主决定后交流。

2、看来决定两个量是否成正比例务必具备几个条件?

强调:只有具备两个条件,我们才能说这两个量成正比例。

三、课堂练习:

1、根据下表中的数据,决定表中的两个量是不是成正比例:

平行四边形的面积/cm2

6

12

18

24

30

平行四边形的高/cm

1

2

3

4

5

买邮票的枚数/枚

1

2

3

4

5

所付的钱数/元

0.8

1.6

2.4

3.2

4.0

2、小明和爸爸的年龄变化状况如下:

小明的年龄/岁

6

7

8

9

10

11

爸爸的年龄/岁

32

33

(1)把表格填写完整。

(2)父子的年龄成正比例吗?为什么?

3、决定下面各题中的两个量是否成正比例,并说明理由。

(1)每袋大米的质量必须,大米的总质量和袋数。

(2)一个人的身高和年龄。

(3)宽不变,长方形的周长和长。

(4)圆的周长和直径。

(5)圆的面积和半径。

四、课堂总结:

透过本节课的学习,你学到了什么新本领?其实啊,在生活中还有很多成正比例的两个量,课后请大家用心去发现,找出生活中成正比例的量。

板书设计:

正比例

一个量随着另一个量的变化而变化

两个量的比值是不变

x=ky(k必须)

教学反思:

1.课堂流程的设计,延展了探究空间。

本节课为学生设计了四大板块,第一板块“初步感受”板块,在这一板块利用学生熟悉的数学情境“正方形的周长与边长、面积与边长的关系”让学生明白同样都是一种量随着另一种量的增加而增加,但在变化过程中却存在着不同的关系。让学生对正比例有个初步的感受。第二板块是选取材料、主体解读的“体会好处”板块。在这一板块中,借助两则具体材料的依托,让学生经历自主选取、独立思考、小组交流和评价等数学活动,使学生充分积累了与正比例知识密切相关的原始信息和感性认识。第三板块是交流思维、构成认识的“概念生成”板块。在这一板块中,学生立足小组间的观点交流和思维共享,借助教师适时适度的点拨,自然生成了正比例的概念,并透过回馈具体材料的概念解释促进了理解的深入。第四板块是“应用”板块,在学生认识了正比例后,让学生自主决定两个量是否成正比例,这两先以表格出现,再以文字叙述的方式呈现,使学生从直观认识向抽象思维发展。这样的设计,使探究空间却更为宽广。

2.数学材料的呈现,丰富了体验途径。

为了给学生的数学学习带给更为充足的材料,将第二三个情境作为可供学生自主选取的两则数学材料进行整体呈现。这样教学的结果是:对于自己选定的数学材料,学生能够凭借个体独立解读、小组交流互评的渐进过程,充分深入地自主探究,在亲历和体验中达成学习目标。而对于另一个未选的数学材料,学生则能够借助全班交流这一互动环节分享其他小组的学习成果,在倾听和欣赏中达成学习目标。这样的教学设计,使得学生的数学学习不再是面面俱到和点到为止,而是重点突破且走向深入的。

3.学习方式的选取,促进了深度感悟。

教师让学生采取选取材料、自主探究、合作共享的学习方式,并注意对学生的学习进行适度的点拨,有利于促进学生的深度感悟。由于学习材料是自己选取的,因而学习过程便更多地体现自觉、自主、自我的主体意味。在自主探究的过程中,学生初步积累了丰富真切的原始体验。在与同伴交流时,学生在表达中巩固了自己的探究成果,同时又在倾听中分享了别人的学习收获、体会。能够说,虽然每个学生只重点研究了一则材料蕴含的规律,但却全面收获了三则材料所彰显的数学事实,这正是数学交流的魅力所在。在此基础上,借助教师恰当及时的教学点拨,自然实现了“数学事实”向“数学概念”的提升。

《正比例》教学设计 篇十三

教学内容:

九年义务教育六年制小学数学第十二册P63——64

教学目标:

1、能用“描点法”画出表示正比例关系的图像,帮助学生初步认识正比例的图像,进一步认识成正比例的量的变化规律。

2、使学生能根据具有正比例关系的一个量的数值看图估计另一个量的数值。初步体会正比例图像的实际应用,进一步培养观察能力和估计能力。

3、使学生进一步体会数学与日常生活的密切联系,养成积极主动地参与学习活动的习惯。

教学重点:

能认识正比例关系的图像。

教学难点:

利用正比例关系的图像解决实际问题。

设计理念:

数学课堂教学中要让学生亲身经历知识形成的全过程。课堂中向学生动态地展示正比例图像的绘制过程,引导学生能用“描点法”画出表示正比例关系的图像,通过观察帮助学生体会成正比例的量的变化规律,进而掌握利用图像由一个量的数值估计另一个量的数值的方法,使学生能逐步利用正比例关系的图像解决实际问题

教学步骤教师活动学生活动

一、复习激趣1、判断下面两种量能否成正比例,并说明理由。

◎数量一定,总价和单价

◎和一定,一个加数和另一个加数

◎比值一定,比的前项和后项

2、折线统计图具有什么特点?能否把成正比例的两种量之间的关系在折线统计图里表示出来呢?如果能,那又会是什么样子的呢?

学生口答

想象猜测

二、探究新知1、出示例1的`表格(略)

根据表中列出的两种量,在黑板上分别画出横轴和纵轴。

你能根据表中的每组数据,在方格图中找一找相应的点,并依次描出这些点吗?

2、学生尝试画出正比例的图像

3、展示、纠错

每个点都应该表示路程和时间的一组对应数值。

4、回答例2图像下面的问题,重点弄清:

(1)说出每个点表示的含义。

(2)为什么所描的点在一条直线上?

(3)你能根据时间(路程)估计所对应的路程(时间)吗?你是怎么看的?

借助直观的图像理解两种量同时扩大或缩小的变化规律。

学生到黑板上示范

互相评价纠错

学生讨论

说说是怎样想的

三、巩固延伸

1、完成练一练

小玲打字的个数和所用的时间成正比例吗?为什么?

根据表中的数据,描出打字数量和时间所对应的点,再把它们按顺序连起来。

估计小玲5分钟打了多少个字?打750个字要多少分钟?

2、练习十三第4题

先看一看、想一想,再组织讨论和交流。

要求学生说出估计的思考过程。

3、练习十三第5题

先独立填表,再根据表中的数据描出长度和总价所对应的点,把它们按顺序连起来。

组织讨论和交流

4、你能根据生活实际,设计出两种成正比例量关系的一组数据吗?

根据表中的数据,描出所对应的点,再把它们按顺序连起来。

同桌之间相互提出问题并解答。

独立完成,集体评讲

想一想,说一说

画一画,议一议

学生设计,交换检查并相互评价

四、评价反思

这节课你学会了什么?你有哪些收获?还有哪些疑问?

《正比例》教学设计 篇十四

教学要求:

使学生进一步理解和掌握正、反比例中每个概念的含义;更熟练地判断两种相关联的量是不是成比例的量。如果成比例,成什么比例。

进一步提高解决简单实际问题的能力。

教学过程:

提出本课复习题

基本概念的复习

什么叫两种相关联的量?

下面两种相关联的量哪些量成比例?成比例的是成正比例还需成反比例?

什么样的两种量成正比例关系?什么样的两种量成反比例关系?

成正比例关系的量与成反比例关系的量有什么异同点?

应用练习

完成教材97页的“做一做”。

第3题在完成时可先把题中的等式变一变形,像y=8x变成y/x=8;把y=8/y变成xy=8,这样判断起来就方便了。

巩固练习

完成教材99页第6~7题。

全课总结(略)

教学目标:

使学生进上步理解和掌握比和比例的意义与性质。

区别有关易混概念,进上步提高运用所学知识能力,为今后的学习打下良好的基础。

教学过程:

讲述本课复习课题并板书

基本概念的复习

比和比例的意义与性质。

什么叫比?什么叫比例?(就学生所举的例子再让学生说说比和比例中各部分的名称),比的后项为什么不能是0?

比和分数、除法有什么联系?

说说比的基本性质的比例的基本性质?

比的'基本性质与比例的基本性质各有什么用处?

看教材95页的归纳整理,并把基本性质栏中的空填上,说说根据什么填写的?

完成教材95的“做一做”。

结合第3题让学生说说什么叫做解比例?根据是什么?

示比值和化简比。

独立完成教材96页上的题目。

说说求比值与化简比的区别?

(求比值是根据比的意义。用前项除以后项,得到结果是一个数;化简比是根据比的基本性质,把比的前项和后项,同时乘以(或除以)相同的数(0除外),得到的结果是一个最简整数比)。

看书中的表,总结方法。

完成教材96页的“做一做”

比例尺

问题:1)什么叫做比例尺?说说“图距”、“实距”、“比例尺”三者之间的关系。

2)一幢教学大楼平面图的比例尺是1/100,这比例尺表示的是什么意思?

比例尺除写成数字化形式处,还可怎样表示?

完成教材97页上的“做一做”。(理解比例尺实质上是一个比,此比的前项与后项表示的意义是什么。)

练习巩固

完成教材十九页第1~4题。

全课总结(略)