1. 主页 > 范文大全 >

集合教案【精选9篇】6-9-84

作为一位杰出的教职工,往往需要进行教案编写工作,借助教案可以让教学工作更科学化。教案应该怎么写才好呢?以下是www.kaoyantv.com小编征途给大家收集整理的9篇集合教案的相关范文,欢迎参考,希望对大家有一些参考价值。

小学数学教案 篇一

教学内容:

义务教育课程标准实验教科书二年级上册61页

教学目标:

1.让学生经历编制6的乘法口诀的过程,体验6的乘法口诀的来源,促使学生加深对每句口诀意义的理解,更好地掌握乘法口诀。

2.使学生熟记6的乘法口诀,能灵活运用6的乘法口诀解决问题。

3.培养学生认真观察、独立思考的良好习惯和推理概括能力,向学生渗透函数对应思想。

4.从学生的生活实际出发,激发学生学习数学的兴趣和参与的积极性,树立学生学好数学的信心,感受探索的乐趣。 重点:掌握6的乘法口诀。

难点:

熟记6的乘法口诀。

教学准备:

PPT

教学过程:

一、创设情境,激趣引入

师:刚才同学们悦耳的背书声,吸引海底的小鱼来到我们的课上和我们一起学习。

它们啊!出了几个题目让你们做!

小鱼说:你会吗? 2*5= 4*4= 3*1= 5*4= 1*2= 5*3= 4*2= 4*3= 2*2= 1*3= 2*4= 2*2=

师:同学们,你们1—5的乘法口诀学得真认真。今天我们继续学习6的乘法口诀,这次,老师想让同学们自己编口诀,你们敢挑战吗?

二、自主探索,总结规律

师:老师很喜欢鱼,可是又老是养不好鱼,于是我就想,用三角形摆金鱼可以吗?(课件先出示一条金鱼)

师:摆一条金鱼用了几个三角形? 摆2条呢?那么摆3条、4条、5条、6条呢? 学生讨论,然后完成下表。

(教材61页主题图下面的表格) 鱼(条) 1 2 3 4 5 6 三角形(个) 6 12

提问:

1、6是有几个6相加得到的?乘法算式怎么列? 那12呢?18、24、30、36呢?

2、你能根据1*6=6,1*6=6编出一句乘法口诀吗? ( 板书:一六得六)

师:你能编出6的其它5句口诀吗? 请你把教材61页的口诀补充完整 (板书: 二六十二 三六十八 四六二十四 五六三十 六六三十六 ) 在生汇报时师板书,并让生说一说口诀所表示的意思

师:同学们真了不起,一下子就把6的乘法口诀编出来了。齐读!

师:认真观察这些口诀,你发现了什么?

师:同学们真会思考。

这些发现都可以帮助我们记住6的乘法口诀。

师:你认为哪句容易记,哪句难记?你有好办法很快记住吗? 如果我忘记了“四六”是多少怎么办?

口答:5个6比4个6多几,比6个6少几?

师:现在自由记忆口诀看谁记得最快? 1)齐背 2)分组背 3)对口令 4)开火车背 5)指名背 6)同桌比赛,谁背得熟练 三、趣味练习,应用新知 1、用口诀读下面的乘法算式 2*6= 3*6= 4*6= 6*2= 6*3= 6*4= 6*5= 4*5= 6*6= 1*6= 2、钓鱼小高手2*6= 4*6= 6*4= 1*6= 6*5= 6*6= 3*6= 6*2= 6*3= 5*6= 3、谜语: 有时挂在天上,有时挂在树梢。

有时像个圆盘,有时像把镰刀。

师:这首诗里面一共有多少个字?谁能最快的知道?你是怎么想的? (引导学生运用口诀解决问题)

4、根据图形说口诀和乘法算式

四、情感沟通,全课小结

师:同学们,今天这节课你有什么收获?

五、板书设计

6的乘法口诀 1*6=6 一六得六 6*1=6 2*6=12 二六十二 6*2=12 3*6=18 三六十八 6*3=18 4*6=24 四六二十四 6*4=24 5*6=30 五六三十 6*5=30 6*6=36 六六三十六

还 可以加上教材分析、作业布置、教后反思。

《集合》教学设计 篇二

教学内容:

义务教育课程标准实验教科书小学数学三年级上册《数学广角——集合》的内容之一。

教学目标:

1.知识技能目标:在具体的情境中使学生感受集合的思想,感知集合图的产生过程。

2.数学思考目标:

能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。

3.问题解决目标:

(1).能借助直观图,利用集合的思想方法解决简单的实际问题。

(2).渗透多种方法解决重叠问题的意识。

4.情感态度目标:

(1)培养学生善于观察、善于思考的能力。

(2)手脑结合、学中激趣,体验合作乐趣,养成良好习惯。

教学重难点:

1.重点:体会集合思想,利用集合的思想方法解决简单的重叠问题,并且能用数学语言进行描述。

2.难点:对重叠部分的理解;学会用集合图来表示事物之间的关系。

教学方法:观察法、分析法、讨论法、操作法、直观演示法、尝试法。

学法指导:

1.借图观察、分析、讨论、交流、操作。

2.大胆尝试用集合图来表示事物之间的关系,敢于发表自己的见解。

教具准备:多媒体课件、微视频、切换笔、可以活动的姓名卡片、直尺、磁铁、双面胶、5朵红花和5个五角星。一张大白纸。

学具准备:常规学具、彩笔、作业本。

教学过程:

一、创设情境,引入新课

1.激情导入,引出例题

师:上课之前,我们一起来欣赏一段视频,希望同学们认真仔细的观看,随后,要回答老师的提问。请看大屏幕……(课件出示奉献爱心、从小做起的微视频)

师:看完这段精彩而又让人感动的画面后,你有什么想说的吗?在今后的生活中,如果遇到需要帮助的人或事,你应该怎么做呢?(各抒己见)

师:同学们说的真好!那么,我们荔东小学的同学们也是一方有难、八方支援,非常有爱心。请看大屏幕:这是我校三一班其中一个小组同学向灾区“献爱心”的情况。请同学们认真仔细地观察这幅表格,你从中都发现了哪些数学信息?

设计意图:激发学生学习兴趣的同时,渗透奉献爱心、从小做起,一方有难、八方支援的爱心教育。

三一班某小组同学“献爱心”的情况:

捐款

黄娜

董泽

李彤

张阳

任一

捐物

孟涛

李彤

任一

吴越

张恒

张旭

生1:我发现在这次“献爱心”活动中,有捐款的,还有捐物的。

生2:我发现捐款的有5人,捐物的有6人。

师:你能提出一个数学问题吗?

生1:捐款的比捐物的少几人?

生2:捐物的比捐款的多几人?

生3:捐款的和捐物的一共多少人?

2.设问质疑,引发冲突

师:参加捐款捐物的一共有多少人?如何解答?

生:11人、10人、9人。

师:这么一个简单的问题怎么会有这么多不同的答案呢?

生:里面的同学重复了。

师:哪里重复了?(李彤和任一,课件闪动。)

看来这张表格不能让我们很清楚的看出一共有多少人?那你们能不能想想办法,在不改变题意的前提下,将表格中的名字作以调整,让人们很清楚的看出一共有多少人?为此,老师特意为大家准备了一个可以随意活动姓名的表格。请看黑板:(揭示黑板上的活动表格)

师:下面请同学们分组讨论,如何去调整表格?

二、小组交流,探究新知

1.分组讨论、调整表格。(各组代表汇报、操作、展示)

方案一:

捐款

李彤

任一

黄娜

董泽

张阳

捐物

李彤

任一

孟涛

吴越

张恒

张旭

师:你觉得你们组这样摆有什么好处?

生:把重复的两个同学摆在前面,能引人注意。

师:谁都赞同他们的摆法?请把最热烈的掌声送给这个积极探索的小组。你们组的摆法的确不错,可老师还是觉得,有时还会将总人数看成11人,哪一组还有更好的摆法?

(课堂生成:如果学生没有想到这个方案,可以启发:当我们读书的时候,眼睛从左往右看。那么,想引起人们的注意,应该把既捐款又捐物的人名移到左边。)

方案二:

捐款

李彤任一

黄娜

董泽

张阳

捐物

孟涛

吴越

张恒

张旭

师:哇!你们的摆法很独特,说说你们这样摆有什么好处?

生:因为有两个李彤和任一,我们取下来一个李彤和任一,将剩下的李彤和任一放在中间,既表示捐款的人,又表示捐物的人,这样,很清楚的看出一共有9人。

师:你们组的摆法真的很有创意,他们组的摆法你满意吗?(生生评价)授予你们小组为“勇于创新小组”。同学们,掌声鼓励。

设计意图:培养学生的观察能力、分析能力、交流合作能力以及创新能力。积发学生的想象力,拓展学生的思维。

(课堂生成:如果学生没有想到这个方案,可以启发:当你和爸爸、妈妈上街的时候,你既想牵爸爸的手,又想牵妈妈的手,你应该走到什么位置?那么,同样的道理,李彤和任一这两个同学既捐了款又捐了物,他们应该放到什么位置?)

2.圈一圈。

师:请同学们观察这张调整后的表格,捐款的都有哪些人?捐物的都有哪些人?你能分别把它们圈出来吗?

设计意图:(不同颜色的粉笔圈出来更明显)为韦恩图的形成奠定基础。

3.探究韦恩图

师:为了让大家看的更清楚、更直观,请看大屏幕:

(1)取消表格。

表示捐款和捐物的人名单我们已经用线圈起来了,底下的表格已经没有用了,可以将它取消。

(2)捐款的移到左边,捐物的移到右边。

(3)线条歪歪曲曲的,将它画好就更美观了。(课件出现韦恩图)

设计意图:感受韦恩图的形成过程,让学生亲身经历知识的形成过程。

(4)介绍韦恩图。

师:在很久以前,就有人给它起了个名字,叫韦恩图。(出现韦恩图三个字)你们知道为什么把它称作韦恩图吗?因为这是英国著名的数学家韦恩在19世纪发明的,后来,就把这样的图叫韦恩图,也叫集合图。今天,我们就一起探究有关集合的知识《数学广角》——集合。(板书课题)

设计意图:介绍课外知识,拓宽知识视野。

师:同学们,我们通过自主探究、动手操作、小组讨论,将一幅不能很清楚的看到“捐款和捐物一共有多少人?”的表格,经过旋转演变后,转化成这副既科学合理又形象直观的韦恩图,你们真的很了不起!师:请大家仔细观察大屏幕,回答老师的提问。

4.列式计算。

(1)课件分别出示韦恩图的五个部分,学生分别说出每部分所表示的含义,课件一一呈现数学信息。

师:同学们看懂韦恩图了,也真正领悟到了每部分所表示的含义,并且,从中发现了这么多的数学信息,现在,你能计算出捐款和捐物的一共有多少人吗?请同学们独立解答。

(2)计算板演。

方法一:5+6-2=9(人)答:捐款和捐物的一共有9人。(贴答数)

讨论:为什么要减2?(因为有2个人既捐款又捐物)

方法二:3+2+4=9(口答)方法三:5+4=9(口答)方法四:3+6=9(口答)

设计意图:发展学生思维,体现方法多样化。

三、实践应用,巩固内化

师:同学们,通过刚才的学习,我们学会了许多知识和本领,其实,利用韦恩图可以帮我们解决生活中的许多问题,我们来看看:

1.举一反三(4道抢答题)

4.思维训练

三年级有10名同学参加竞赛,其中,参加数学竞赛的有5人,参加作文竞赛的有6人。

(1)既参加数学竞赛又参加作文竞赛的有几人?

(2)只参加数学竞赛的有几人?

(3)只参加作文竞赛的有几人?

设计意图:有梯度的练习题有利于不同层次的学生均有收获。举一反三抢答题强调重点,内化知识;思维训练题求重叠部分,培养学生的逆向思维,培养学生灵活运用知识解决问题的能力。

四、总结质疑,自我提高

1.学生说这节课的收获并质疑

2.互相评价、共同提高(自评互评生评师师评生)

师:同学们,你们课堂上,善于观察、认真思考、踊跃发言、敢于创新。表现得非常出色!通过自主探究、小组交流学到了很多关于集合的知识,下面,有请获得红花和红星奖励的小朋友上台。红花站左边、红星站右边。

引发冲突:两种都有的学生应该站哪?(中间)请观察这一排同学,回答问题:

1.获得红花奖励的指哪些同学?

2.获得红星奖励的指哪些同学?

3.既获得红花奖励又获得红星奖励的指哪些同学?

4.只获得红花奖励的指哪些同学?

5.只获得红星奖励的指哪些同学?

6.获得红花奖励和红星奖励的一共有多少人?

设计意图:内化集合知识;实现评价方法的多元化和评价方式的多样化;渗透养成良好学习习惯的思想教育。

五、作业布置,知识升华

我是小小设计师。(课后作业)

请以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,设计一个集合图。大胆尝试吧!只要我们能在知识的海洋里成风破浪、历练出一身好本领,一定会设计并创造出一个属于自己的精彩人生!

设计意图:给学生一个开放的空间,以讲台前获得红花奖励和红星奖励的学生人数为题材,用今天所学到的知识,让学生自主探索,自己设计出集合图。充分地利用韦恩图,让他们明白韦恩图在平时生活中也是非常有用,同时,培养了学生的创造能力。

六、板书设计,凸显重点(体现学生的主体地位)

《集合》教学设计 篇三

教学目标:

1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。

2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。

教学重点:让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。

教学难点:学生对重叠部分的理解。

教学准备:多媒体课件、姓名卡片等。

教学过程:

(一)创设情境,引出新知

1.出示信息。

出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。

2.提出问题,激发“冲突”

让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。

(二)自主探究,学习新知

1.独立思考表达方式,经历知识形成过程。

师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?

学生独立思考,并尝试解决。

2.汇报交流,初步感知集合概念。

(1)小组交流,互相介绍自己的作品。

(2)选择有代表性的方案全班交流。

请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。

预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。

预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。

预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。

3.对比分析,介绍韦恩图。

(1)对比、分析,提示课题。

师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?

预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。

预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。

师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)

(2)介绍用韦恩图表示集合。

师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。

师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)

师:这个图表示什么?

预设:参加跳绳比赛的学生的集合。

出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。

在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。

(3)介绍用韦恩图表示集合的运算。

提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?

通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。

提问:中间重叠的部分表示的是什么?

预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。

提问:整个图表示的是什么?

预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。

4.列式解答,加深对集合运算的认识。

(1)尝试独立解决。

(2)汇报交流,体会解决问题的多种方法。

预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。

让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。

(3)比较辨析,体会基本方法。

通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。

(三)联系生活,巩固练习

1.完成“做一做”第1题。

先独立完成,再汇报交流。

可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。

2.完成“做一做”第2题。

学生先独立完成,再汇报交流。

提问1:你是用什么方法解答第(1)题的?要注意什么?

预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。

提问2:第(2)题是求什么?你是用什么方法解答的?

预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。

(四)全课小结

师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。

中班数学活动教案 篇四

活动目标

1、在故事情境中,感知梯形的特征。

2、通过找一找、比一比、玩一玩,体验数学活动的乐趣。

活动准备

1、课件《图形王国的故事》。

2、蜘蛛拼图操作材料若干。

3、正方形、长方形、三角形的彩色手工纸若干。

4.纸板裁割成的图形若干。

活动过程

一、在故事情境中引出梯形,激发幼儿的探索兴趣

1、讲述故事《图形王国的故事》。

2、关键提问:

(1)咦?这里少了谁?

(引导幼儿快速观察,在众多的图形中发现少了什么形状,并鼓励他们大胆表述。)

(2)梯形弟弟在干什么?

(要求幼儿观察画面,尝试通过人物的动作、表情描述画面,引入“捉迷藏”的寻找游戏。)

(3)如果你们遇到梯形弟弟,会对他说什么?

(引导幼儿结合自己的生活经验大胆表达,在劝说“梯形”的过程中,换位思考,感受家人关爱、牵挂孩子的情感。)

二、在找找、玩玩中,加强感知,进一步掌握梯形的主要特征

1、第一次寻找比较,感知梯形的主要特征。

关键提问:

(1)请出一个三角形和梯形比一比,它们有什么不一样?

(教师出示九宫格,让幼儿在众多的三角形中指认梯形,说说三角形与梯形的不同,初步感知梯形“有四条边、四个角”的特征。)

(2)正方形、长方形为什么不能称梯形呢?

(教师出示不服气的正方形、长方形,鼓励幼儿观察正方形、长方形和梯形的'区别,尝试描述区别,感受梯形“一组对边平行、另一组对边不平行”的特征,说服不服气的形状们。)

2、第二次寻找比较,巩固对梯形主要特征的认识。

关键提问:

这些梯形长得一样吗?哪里不一样?

(出示九宫格,幼儿在众多形状中指认出直角梯形、等腰梯形、不等腰梯形,尝试描述不同梯形的特征,结合生活经验,展开想象,说说这些梯形像什么,通过对对边形态的感知,巩固梯形“一组对边平行、另一组对边不平行”的特征。)

3、蜘蛛拼图游戏,经验运用。

关键提问:

(1)这一次梯形躲到哪去了?

(出示蜘蛛拼图,提出操作要求。开始幼儿可能会遇到很多相似梯形的干扰,可以引导幼儿尝试转动蜘蛛网,调整观察角度,根据梯形的特征,比一比,找出梯形。)

(2)看一看,这些都是梯形吗?你是用什么方法找到梯形的。

(在集体验证中,幼儿观察黑板上的“梯形”,大胆纠错和辩论,再一次巩固对梯形特征的认识。)

三、折出梯形,体验图形游戏的乐趣

1、示正方形、长方形、三角形的彩色手工纸:瞧!这次梯形躲到哪去了?用什么方法可以找到它?

(请幼儿再一次自主探索,根据梯形的主要特征尝试自我验证,结合已有经验,动手尝试折出梯形,送到“梯形”小房子里,体验图形游戏的乐趣。)

2、延伸活动:拼图游戏

瞧,梯形请来了好多兄弟姐妹,我们和这些图形宝宝一起到图形王国玩拼图游戏吧!

高一数学第一章《集合》教案 篇五

教材分析:

“数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。

?教学目标:?

1、学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。

2、能利用集合的思想方法来解决简单的实际问题。?

3、学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。?

教学重点:学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。

教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

教学难点:经历集合图的产生过程,理解集合图的意义。

教学过程:

一、巧用对比,初悟“重复”

1.观察与比较(课件出示图片)父与子

2、提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?

第一种:无重复情况。

黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。

预设:列式一:2+2=4(人)

第二种:有重复情况。

汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。

列式二:2+2=4(人)4-1=3(人)

师追问:为什么减1?

二、初步探究,感知重叠

1、查看原始数据,引出重复。

师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)

书法比赛

小丁

李方

小明

小伟

东东

绘画比赛

小明

东东

丹丹

张华

王军

刘红

师:从这张表格中你了解到了哪些信息?

(2)师:一共有多少名同学参加比赛?

师:怎么会错了呢?再仔细看看,谁来说说?

(3)师:那到底是多少人呢?我们来数数看。

重复什么意思?指着第二个小明:“他算吗?”为什么不算?

(4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、

2、揭示课题。(板书课题:重叠问题)。

三、经历过程,建立模型

1、激发欲望,明确要求。

师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?

师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)

请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。

2、独立探究,创生维恩图

学生探究画法,师巡视,从中找出有代表性的作品准备交流。

3、展示交流,感知维恩图

师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。

预设:

第一种情况:做记号

师:你是怎么想的?

第二种情况:写在最前面;写在前面并圈出来

师:你是怎么想的?这样整理有什么好处?

师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。

引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。

第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)

出示:他把这两个名字写在这合适吗?应该写在哪?

第四种情况:在前面并一个名字来表示

师:你是怎么想的?这样整理有什么好处?

师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?

师:圈的时候,你们有什么发现?为什么?

师:看来,这样调整能清楚地表示重复和不重复的部分。

4、整理画法,理解维恩图

(1)动态演示维恩图产生过程

师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的这一部分我们恰好可以用来表示什么?

(2)介绍维恩图的历史

师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。

(3)理解维恩图各部分意义

(课件出示用不同颜色,直观理解各部分意义)

师:仔细观察,你知道韦恩图的`各部分表示什么意思吗?

师:a.红色圈内表示的是什么?

b.蓝色圈里表示什么?

c.中间部分的两个表示什么?

d.左边的“紫色部分”表示什么?

e.右边的“绿色部分”表示什么?

师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)

(4)比较突出维恩图的优势

我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?

(5)、数形结合,运用维恩图。

师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演

预设整理算法:

生1:5+6-2=9(人)

生2:3+2+4=9(人)

生3:5-2+6=9(人)

生4:6-2+5=9(人)

①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)

重点理解为什么-2。课件动态演示

②比较:

3+2+4=9(人)

5+6-2=9(人)

a.两道算式中都有个2,这个2表示什么呢?

圈出+2和-2,为什么(1)中是+2,(2)中是-2?

b、你能在第一个算式里找到5?6?

c. 3+2表示什么意思?2+4表示什么意思?这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)

师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)

四、解决问题,运用模型

1、创设情境,生活应用(课件演示)

这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?

展示生活问题

(1)这是我们科学书中的重叠问题,找到重叠部分了吗?

(2)这是我们数学书中的重叠问题,谁重叠了?

(3)这是自然界的动物,它们之间存在重叠问题吗?

(4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!

(5)、文具店的问题。

出示下题:

2、运用新知解决问题。

这些问题你们都能解决吗?(完成练习纸)

反馈:

第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?

展示:5+5-3=7(种)

2+3+2=7(种)

师:这里的3表示什么?

为什么一个+3,一个-3呢?

师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?

第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?

第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?

五、展开变式,深化模型

师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。

我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?

老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?

反馈:5人。6人。7人。8人。9人。

课件动态演示:

师:仔细观察你有什么发现?

同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问

六、回顾总结,延伸模型。

这节课你有什么收获?你还想知道什么?

集合与简易逻辑教案 篇六

教学目标:

(1) 了解集合、元素的概念,体会集合中元素的三个特征;

(2) 理解元素与集合的“属于”和“不属于”关系;

(3) 掌握常用数集及其记法;

教学重点:掌握集合的基本概念;

教学难点:元素与集合的关系;

教学过程:

一、引入课题

军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念--集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、新课教学

(一)集合的有关概念

1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:判断以下元素的全体是否组成集合,并说明理由:

(1) 大于3小于11的偶数;

(2) 我国的小河流;

(3) 非负奇数;

(4) 方程的解;

(5) 某校级新生;

(6) 血压很高的人;

(7) 著名的数学家;

(8)平面直角坐标系内所有第三象限的点

(9) 全班成绩好的学生。

对学生的解答予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:给定一个集合与集合里面元素的顺序无关。

(4)集合相等:构成两个集合的元素完全一样。

5. 元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A

(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:aA

例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A

4A,等等。

6.集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C...表示,集合的元素用小写的拉丁字母a,b,c,...表示。

高中数学集合教案设计 篇七

教材:集合的概念

目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:

一、引言:(实例)用到过的“正数的集合”、“负数的集合”

如:2x-1>3 x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合 0,1,2,3,……

如:高一(5)全体同学组成的集合。

结论: 某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}

用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}

常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N或 N+

整数集 Z

有理数集 Q

实数集 R

集合的三要素: 1。元素的确定性; 2。元素的互异性; 3。元素的无序性

(例子 略)

三、关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a(A ,相反,a不属于集A 记作 a(A (或a(A)

例: 见P4—5中例

四、练习 P5 略

五、集合的表示方法:列举法与描述法

列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{(1,1}

例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9}

描述法:用确定的条件表示某些对象是否属于这个集合的方法。

语言描述法:例{不是直角三角形的三角形}再见P6例

数学式子描述法:例 不等式x-3>2的解集是{x(R| x-3>2}或{x| x-3>2}或{x:x-3>2} 再见P6例

六、集合的分类

1、有限集 含有有限个元素的集合

2、无限集 含有无限个元素的集合 例题略

3、空集 不含任何元素的集合 (

七、用图形表示集合 P6略

八、练习 P6

小结:概念、符号、分类、表示法

九、作业 P7习题1.1

第二教时

教材: 1、复习 2、《课课练》及《教学与测试》中的有关内容

目的: 复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:

复习:(结合提问)

1、集合的概念 含集合三要素

2、集合的表示、符号、常用数集、列举法、描述法

3、集合的分类:有限集、无限集、空集、单元集、二元集

4、关于“属于”的概念

例一 用适当的方法表示下列集合:

平方后仍等于原数的数集

解:{x|x2=x}={0,1}

比2大3的数的集合

解:{x|x=2+3}={5}

不等式x2-x-6<0的整数解集

解:{x(Z| x2-x-6<0}={x(Z| -2

过原点的直线的集合

解:{(x,y)|y=kx}

方程4x2+9y2-4x+12y+5=0的解集

解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,-2/3)}

使函数y= 有意义的实数x的集合

解:{x|x2+x-6(0}={x|x(2且x(3,x(R}

处理苏大《教学与测试》第一课 含思考题、备用题

处理《课课练》

作业 《教学与测试》 第一课 练习题

第三教时

教材: 子集

目的: 让学生初步了解子集的概念及其表示法,同时了解等集与真子集的有关概念。

过程:

一 提出问题:现在开始研究集合与集合之间的关系。

存在着两种关系:“包含”与“相等”两种关系。

二 “包含”关系—子集

1、 实例: A={1,2,3} B={1,2,3,4,5} 引导观察。

结论: 对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,

则说:集合A包含于集合B,或集合B包含集合A,记作A(B (或B(A)

也说: 集合A是集合B的子集。

2、 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A(B (或B(A)

注意: (也可写成(;(也可写成(;( 也可写成(;(也可写成(。

3、 规定: 空集是任何集合的子集 。 φ(A

三 “相等”关系

实例:设 A={x|x2-1=0} B={-1,1} “元素相同”

结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B, 即: A=B

① 任何一个集合是它本身的子集。 A(A

② 真子集:如果A(B ,且A( B那就说集合A是集合B的真子集,记作A B

③ 空集是任何非空集合的真子集。

④ 如果 A(B, B(C ,那么 A(C

证明:设x是A的任一元素,则 x(A

A(B, x(B 又 B(C x(C 从而 A(C

同样;如果 A(B, B(C ,那么 A(C

⑤ 如果A(B 同时 B(A 那么A=B

四 例题: P8 例一,例二 (略) 练习 P9

补充例题 《课课练》 课时2 P3

五 小结:子集、真子集的概念,等集的概念及其符号

几个性质: A(A

A(B, B(C (A(C

A(B B(A( A=B

作业:P10 习题1.2 1,2,3 《课课练》 课时中选择

第四教时

教材:全集与补集

目的:要求学生掌握全集与补集的概念及其表示法

过程:

一 复习:子集的概念及有关符号与性质。

提问(板演):用列举法表示集合:A={6的正约数},B={10的正约数},C={6与10的正公约数},并用适当的符号表示它们之间的关系。

解: A=(1,2,3,6}, B={1,2,5,10}, C={1,2}

C(A,C(B

二 补集

实例:S是全班同学的集合,集合A是班上所有参加校运会同学的集合,集合B是班上所有没有参加校运动会同学的集合。

集合B是集合S中除去集合A之后余下来的集合。

结论:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

记作: CsA 即 CsA ={x ( x(S且 x(A}

2、例:S={1,2,3,4,5,6} A={1,3,5} CsA ={2,4,6}

三 全集

定义: 如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。

如:把实数R看作全集U, 则有理数集Q的补集CUQ是全体无理数的集合。

四 练习:P10(略)

五 处理 《课课练》课时3 子集、全集、补集 (二)

六 小结:全集、补集

七 作业 P10 4,5

《课课练》课时3 余下练习

第五教时

教材: 子集,补集,全集

目的: 复习子集、补集与全集,要求学生对上述概念的认识更清楚,并能较好地处理有关问题。

过程:

一、复习:子集、补集与全集的概念,符号

二、辨析: 1。补集必定是全集的子集,但未必是真子集。什么时候是真子集?

2。A(B 如果把B看成全集,则CBA是B的真子集吗?什么时候(什么条件下)CBA是B的真子集?

三、处理苏大《教学与测试》第二、第三课

作业为余下部分选

第六教时

教材: 交集与并集(1)

目的: 通过实例及图形让学生理解交集与并集的概念及有关性质。

过程:

复习:子集、补集与全集的概念及其表示方法

提问(板演):U={x|0≤x<6,x(Z} A={1,3,5} B={1,4}

求:CuA= {0,2,4}。 CuB= {0,2,3,5}。

新授:

1、实例: A={a,b,c,d} B={a,b,e,f}

公共部分 A∩B 合并在一起 A∪B

2、定义: 交集: A∩B ={x|x(A且x(B} 符号、读法

并集: A∪B ={x|x(A或x(B}

见课本P10--11 定义 (略)

3、例题:课本P11例一至例五

练习P12

补充: 例一、设A={2,-1,x2-x+1}, B={2y,-4,x+4}, C={-1,7} 且A∩B=C求x,y。

解:由A∩B=C知 7(A ∴必然 x2-x+1=7 得

x1=-2, x2=3

由x=-2 得 x+4=2(C ∴x(-2

∴x=3 x+4=7(C 此时 2y=-1 ∴y=-

∴x=3 , y=-

例二、已知A={x|2x2=sx-r}, B={x|6x2+(s+2)x+r=0} 且 A∩B={ }求A∪B。

解:

∵ (A且 (B ∴

解之得 s= (2 r= (

∴A={ ( } B={ ( }

∴A∪B={ ( ,( }

三、小结: 交集、并集的定义

四、作业:课本 P13习题1、3 1--5

补充:设集合A = {x | (4≤x≤2}, B = {x | (1≤x≤3}, C = {x |x≤0或x≥ },

求A∩B∩C, A∪B∪C。

《课课练》 P 6--7 “基础训练题”及“ 例题推荐”

第七教时

教材:交集与并集(2)

目的:通过复习及对交集与并集性质的剖析,使学生对概念有更深刻的理解

过程:一、复习:交集、并集的定义、符号

提问(板演):(P13 例8 )

设全集 U = {1,2,3,4,5,6,7,8},A = {3,4,5} B = {4,7,8}

求:(CU A)∩(CU B), (CU A)∪(CU B), CU(A∪B), CU (A∩B)

解:CU A = {1,2,6,7,8} CU B = {1,2,3,5,6}

(CU A)∩(CU B) = {1,2,6}

(CU A)∪(CU B) = {1,2,3,5,6,7,8}

A∪B = {3,4,5,7,8} A∩B = {4}

∴ CU (A∪B) = {1,2,6}

CU (A∩B) = {1,2,3,5,6,7,8,}

结合图 说明:我们有一个公式:

(CUA)∩( CU B) = CU(A∪B)

(CUA)∪( CUB) = CU(A∩B)

二、另外几个性质:A∩A = A, A∩φ= φ, A∩B = B∩A,

A∪A = A, A∪φ= A , A∪B = B∪A.

(注意与实数性质类比)

例6 ( P12 ) 略

进而讨论 (x,y) 可以看作直线上的点的坐标

A∩B 是两直线交点或二元一次方程组的解

同样设 A = {x | x2(x(6 = 0} B = {x | x2+x(12 = 0}

则 (x2(x(6)(x2+x(12) = 0 的解相当于 A∪B

即: A = {3,(2} B = {(4,3} 则 A∪B = {(4,(2,3}

三、关于奇数集、偶数集的概念 略 见P12

例7 ( P12 ) 略

练习 P13

四、关于集合中元素的个数

规定:集合A 的元素个数记作: card (A)

作图 观察、分析得:

card (A∪B) ( card (A) + card (B)

card (A∪B) = card (A) +card (B) (card (A∩B)

五、(机动):《课课练》 P8 课时5 “基础训练”、“例题推荐”

六、作业: 课本 P14 6、7、8

《课课练》 P8—9 课时5中选部分

第八教时

教材:交集与并集(3)

目的:复习交集与并集,并处理“教学与测试”内容,使学生逐步达到熟练技巧。

过程:

一、复习:交集、并集

二、1.如图(1) U是全集,A,B是U的两个子集,图中有四个用数字标出的区域,试填下表:

区域号 相应的集合 1 CUA∩CUB 2 A∩CUB 3 A∩B 4 CUA∩B 集合 相应的区域号 A 2,3 B 3,4 U 1,2,3,4 A∩B 3

图(1)

图(2)

2、如图(2) U是全集,A,B,C是U的三个子集,图中有8个用数字标

出的区域,试填下表: (见右半版)

3、已知:A={(x,y)|y=x2+1,x(R} B={(x,y)| y=x+1,x(R }求A∩B。

解:

∴ A∩B= {(0,1),(1,2)}

区域号 相应的集合 1 CUA∩CUB∩CUC 2 A∩CUB∩CUC 3 A∩B∩CUC 4 CUA∩B∩CUC 5 A∩CUB∩C 6 A∩B∩C 7 CUA∩B∩C 8 CUA∩CUB∩C 集合 相应的区域号 A 2,3,5,6 B 3,4,6,7 C 5,6,7,8 ∪ 1,2,3,4,5,6,7,8 A∪B 2,3,4,5,6,7 A∪C 2,3,5,6,7,8 B∪C 3,4,5,6,7,8 三、《教学与测试》P7-P8 (第四课) P9-P10 (第五课)中例题

如有时间多余,则处理练习题中选择题

四、作业: 上述两课练习题中余下部分

第九教时

(可以考虑分两个教时授完)

教材: 单元小结,综合练习

目的: 小结、复习整单元的内容,使学生对有关的知识有全面系统的理解。

过程:

一、复习:

1、基本概念:集合的定义、元素、集合的分类、表示法、常见数集

2、含同类元素的集合间的包含关系:子集、等集、真子集

3、集合与集合间的运算关系:全集与补集、交集、并集

二、苏大《教学与测试》第6课 习题课(1)其中“基础训练”、例题

三、补充:(以下选部分作例题,部分作课外作业)

1、用适当的符号((,(, , ,=,()填空:

0 ( (; 0 ( N; ( {0}; 2 ( {x|x(2=0};

{x|x2-5x+6=0} = {2,3}; (0,1) ( {(x,y)|y=x+1};

{x|x=4k,k(Z} {y|y=2n,n(Z}; {x|x=3k,k(Z} ( {x|x=2k,k(Z};

{x|x=a2-4a,a(R} {y|y=b2+2b,b(R}

2、用适当的方法表示下列集合,然后说出其是有限集还是无限集。

① 由所有非负奇数组成的集合; {x=|x=2n+1,n(N} 无限集

② 由所有小于20的奇质数组成的集合; {3,5,7,11,13,17,19} 有限集

③ 平面直角坐标系内第二象限的点组成的集合; {(x,y)|x<0,y>0} 无限集

④ 方程x2-x+1=0的实根组成的集合; ( 有限集

⑤ 所有周长等于10cm的三角形组成的集合;

{x|x为周长等于10cm的三角形} 无限集

3、已知集合A={x,x2,y2-1}, B={0,|x|,y} 且 A=B求x,y。

解:由A=B且0(B知 0(A

若x2=0则x=0且|x|=0 不合元素互异性,应舍去

若x=0 则x2=0且|x|=0 也不合

∴必有y2-1=0 得y=1或y=-1

若y=1 则必然有1(A, 若x=1则x2=1 |x|=1同样不合,应舍去

若y=-1则-1(A 只能 x=-1这时 x2=1,|x|=1 A={-1,1,0} B={0,1,-1}

即 A=B

综上所述: x=-1, y=-1

4、求满足{1} A({1,2,3,4,5}的所有集合A。

解:由题设:二元集A有 {1,2}、{1,3}、{1,4}、{1,5}

三元集A有 {1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}

四元集A有 {1,2,3,4}、{1,2,3,5}、{1,2,4,5}、{1,3,4,5}

五元集A有 {1,2,3,4,5}

5、设U={

m、n(Z}, B={x|x=4k,k(Z} 求证:1。 8(A 2。 A=B

证:1。若12m+28n=8 则m= 当n=3l或n=3l+1(l(Z)时

m均不为整数 当n=3l+2(l(Z)时 m=-7l-4也为整数

不妨设 l=-1则 m=3,n=-1 ∵8=12×3+28×(-1) 且 3(Z -1(Z

∴8(A

2。任取x1(A 即x1=12m+28n (m,n(Z)

由12m+28n=4=4(3m+7n) 且3m+7n(Z 而B={x|x=4k,k(Z}

∴12m+28n(B 即x1(B 于是A(B

任取x2(B 即x2=4k, k(Z

由4k=12×(-2)+28k 且 -2k(Z 而A={x|x=12m+28n,m,m(Z}

∴4k(A 即x2(A 于是 B(A

综上:A=B

7、设 A∩B={3}, (CuA)∩B={4,6,8}, A∩(CuB)={1,5}, (CuA)∪(CuB)

={x(N|x<10且x(3} , 求Cu(A∪B), A, B。

解一: (CuA)∪(CuB) =Cu(A∩B)={x(N|x<10且x(3} 又:A∩B={3}

U=(A∩B)∪Cu(A∩B)={ x(N|x<10}={1,2,3,4,5,6,7,8,9}

A∪B中的元素可分为三类:一类属于A不属于B;一类属于B不属于A;一类既属A又属于B

由(CuA)∩B={4,6,8} 即4,6,8属于B不属于A

由(CuB)∩A={1,5} 即 1,5 属于A不属于B

由A∩B ={3} 即 3 既属于A又属于B

∴A∪B ={1,3,4,5,6,8}

∴Cu(A∪B)={2,7,9}

A中的元素可分为两类:一类是属于A不属于B,另一类既属于A又属于B

∴A={1,3,5}

同理 B={3,4,6,8}

解二 (韦恩图法) 略

8、设A={x|(3≤x≤a}, B={y|y=3x+10,x(A}, C={z|z=5(x,x(A}且B∩C=C求实数a的取值。

解:由A={x|(3≤x≤a} 必有a≥(3 由(3≤x≤a知

3×((3)+10≤3x+10≤3a+10

故 1≤3x+10≤3a+10 于是 B={y|y=3x+10,x(A}={y|1≤y≤3a+10}

又 (3≤x≤a ∴(a≤(x≤3 5(a≤5(x≤8

∴C={z|z=5(x,x(A}={z|5(a≤z≤8}

由B∩C=C知 C(B 由数轴分析: 且 a≥(3

( ( ≤a≤4 且都适合a≥(3

综上所得:a的取值范围{a|( ≤a≤4 }

9、设集合A={x(R|x2+6x=0},B={ x(R|x2+3(a+1)x+a2(1=0}且A∪B=A求实数a的取值。

解:A={x(R|x2+6x=0}={0,(6} 由A∪B=A 知 B(A

当B=A时 B={0,(6} ( a=1 此时 B={x(R|x2+6x=0}=A

当B A时

1。若 B(( 则 B={0}或 B={(6}

由 (=[3(a+1)]2(4(a2(1)=0 即5a2+18a+13=0 解得a=(1或 a=(

当a=(1时 x2=0 ∴B={0} 满足B A

当a=( 时 方程为 x1=x2=

∴B={ } 则 B(A(故不合,舍去)

2。若B=( 即 ((0 由 (=5a2+18a+13(0 解得( (a((1

此时 B=( 也满足B A

综上: ( (a≤(1或 a=1

10、方程x2(ax+b=0的两实根为m,n,方程x2(bx+c=0的两实根为p,q,其中m、n、p、q互不相等,集合A={m,n,p,q},作集合S={x|x=(+(,((A,((A且(((},P={x|x=((,((A,((A且(((},若已知S={1,2,5,6,9,10},P={(7,(3,(2,6,

14,21}求a,b,c的值。

解:由根与系数的关系知:m+n=a mn=b p+q=b pq=c

又: mn(P p+q(S 即 b(P且 b(S

∴ b(P∩S 又由已知得 S∩P={1,2,5,6,9,10}∩{(7,(3,(2,6,14,21}={6}

∴b=6

又:S的元素是m+n,m+p,m+q,n+p,n+q,p+q其和为

3(m+n+p+q)=1+2+5+6+9+10=33 ∴m+n+p+q=11 即 a+b=11

由 b=6得 a=5

又:P的元素是mn,mp,mq,np,nq,pq其和为

mn+mp+mq+np+nq+pq=mn+(m+n)(p+q)+pq=(7(3(2+6+14+21=29

且 mn=b m+n=a p+q=b pq=c

即 b+ab+c=29 再把b=6 , a=5 代入即得 c=(7

∴a=5, b=6, c=(7

四、作业:《教学与测试》余下部分及补充题余下部分

第十一教时

教材:含绝对值不等式的解法

目的:从绝对值的意义出发,掌握形如 | x | = a的方程和形如 | x | > a, | x | < a (a>0)不等式的解法,并了解数形结合、分类讨论的思想。

过程:

一、实例导入,提出课题

实例:课本 P14(略) 得出两种表示方法:

1、不等式组表示: 2.绝对值不等式表示::| x ( 500 | ≤5

课题:含绝对值不等式解法

二、形如 | x | = a (a≥0) 的方程解法

复习绝对值意义:| a | =

几何意义:数轴上表示 a 的点到原点的距离

。 例:| x | = 2 。

三、形如| x | > a与 | x | < a 的不等式的解法

例 | x | > 2与 | x | < 2

1(从数轴上,绝对值的几何意义出发分析、作图。解之、见 P15 略

结论:不等式 | x | > a 的解集是 { x | (a< x < a}

| x | < a 的解集是 { x | x > a 或 x < (a}

2(从另一个角度出发:用讨论法打开绝对值号

| x | < 2 或 ( 0 ≤ x < 2或(2 < x < 0

合并为 { x | (2 < x < 2}

同理 | x | < 2 或 ( { x | x > 2或 x < (2}

3(例题 P15 例一、例二 略

4(《课课练》 P12 “例题推荐”

四、小结:含绝对值不等式的两种解法。

五、作业: P16 练习 及习题1.4

第十二教时

教材:一元二次不等式解法

目的:从一元二次方程、一元二次不等式与二次函数的关系出发,掌握运用二次函数求解一元二次不等式的方法。

过程 :

一、课题:一元二次不等式的解法

先回忆一下初中学过的一元一次不等式的解法:如 2x(7>0 x>

这里利用不等式的性质解题

从另一个角度考虑:令 y=2x(7 作一次函数图象:

引导观察,并列表,见 P17 略

当 x=3.5 时, y=0 即 2x(7=0

当 x<3.5 时, y<0 即 2x(7<0

当 x>3.5 时, y>0 即 2x(7>0

结论:略 见P17

注意强调:1(直线与 x轴的交点x0是方程 ax+b=0的解

2(当 a>0 时, ax+b>0的解集为 {x | x > x0 }

当 a<0 时, ax+b<0可化为 (ax(b<0来解

二、一元二次不等式的解法

同样用图象来解,实例:y=x2(x(6 作图、列表、观察

当 x=(2 或 x=3 时, y=0 即 x2(x(6=0

当 x<(2 或 x>3 时, y>0 即 x2(x(6>0

当 (2

∴方程 x2(x(6=0 的解集:{ x | x = (2或 x = 3 }

不等式 x2(x(6 > 0 的解集:{ x | x < (2或 x > 3 }

不等式 x2(x(6 < 0 的解集:{ x | (2 < x < 3 }

这是 △>0 的情况:

若 △=0 , △<0 分别作图观察讨论

得出结论:见 P18--19

说明:上述结论是一元二次不等式 ax+bx+c>0(<0) 当 a>0时的情况

若 a<0, 一般可先把二次项系数化成正数再求解

三、例题 P19 例一至例四

练习:(板演)

有时间多余,则处理《课课练》P14 “例题推荐”

四、小结:一元二次不等式解法(务必联系图象法)

五、作业:P21 习题 1.5

《课课练》第8课余下部分

第十三教时

教材:一元二次不等式解法(续)

目的:要求学生学会将一元二次不等式转化为一元二次不等式组求解的方法,进而学会简单分式不等式的解法。

过程:

一、复习:(板演)

一元二次不等式 ax2+bx+c>0与 ax2+bx+c<0 的解法

(分 △>0, △=0, △<0 三种情况)

1.2x4(x2(1≥0 2.1≤x2(2x<3 (《课课练》 P15 第8题中)

解:1.2x4(x2(1≥0 (2x2+1)(x2(1)≥0 x2≥1

x≤(1 或 x≥1

2.1≤x2(2x<3

(1

二、新授:

1、讨论课本中问题:(x+4)(x(1)<0

等价于(x+4)与(x(1)异号,即: 与

解之得:(4 < x < 1 与 无解

∴原不等式的解集是:{ x | }∪{ x | }

={ x | (4 < x < 1 }∪φ= { x | (4 < x < 1 }

同理:(x+4)(x(1)>0 的解集是:{ x | }∪{ x | }

2、提出问题:形如 的简单分式不等式的解法:

同样可转化为一元二次不等式组 { x | }∪{ x | }

也可转化(略)

注意:1(实际上 (x+a)(x+b)>0(<0) 可考虑两根 (a与 (b,利用法则求解:但此时必须注意 x 的系数为正。

2(简单分式不等式也同样要注意的是分母不能0(如 时)

3(形如 的分式不等式,可先通分,然后用上述方法求解

3、例五:P21 略

4、练习 P21 口答板演

三、如若有时间多余,处理《课课练》P16--17 “例题推荐”

四、小结:突出“转化”

五、作业:P22 习题1.5 2--8 及《课课练》第9课中挑选部分

第十四教时

教材: 苏大《教学与测试》P13-16第七、第八课

目的: 通过教学复习含绝对值不等式与一元二次不等式的解法,逐步形成教熟练的技巧。

过程:

一、复习:1. 含绝对值不等式式的解法:(1)利用法则;

(2)讨论,打开绝对值符号

2、一元二次不等式的解法:利用法则(图形法)

二、处理苏大《教学与测试》第七课 — 含绝对值的不等式

《课课练》P13 第10题:

设A= B={x|2≤x≤3a+1}是否存在实数a的值,分别使得:(1) A∩B=A (2)A∪B=A

解:∵ ∴ 2a≤x≤a2+1

∴ A={x|2a≤x≤a2+1}

(1) 若A∩B=A 则A(B ∴ 2≤2a≤a2+1≤3a+1 1≤a≤3

(2) 若A∪B=A 则B(A

∴当B=?时 2>3a+1 a<

当B(?时 2a≤2≤3a+1≤a2+1 无解

∴ a<

三、处理《教学与测试》第八课 — 一元二次不等式的解法

《课课练》 P19 “例题推荐” 3

关于x的不等式 对一切实数x恒成立, 求实数k的取值范围。

解:∵ x2(x+3>0恒成立 ∴ 原不等式可转化为不等式组:

由题意上述两不等式解集为实数

即为所求。

四、作业:《教学与测试》第七、第八课中余下部分。

第十五教时

教材:二次函数的图形与性质(含最值);

苏大《教学与测试》第9课、《课课练》第十课。

目的: 复习二次函数的图形与性质,期望学生对二次函数y=ax2+bx+c的三个参数a,b,c的作用及对称轴、顶点、开口方向和 △ 有更清楚的认识;同时对闭区间内的二次函数最值有所了解、掌握。

过程:

一、复习二次函数的图形及其性质 y=ax2+bx+c (a(0)

1、配方 顶点,对称轴

2、交点:与y轴交点(0,c)

与x轴交点(x1,0)(x2,0)

求根公式

3、开口

4、增减情况(单调性) 5.△的定义

二、图形与性质的作用 处理苏大《教学与测试》第九课

例题:《教学与测试》P17-18例一至例三 略

三、关于闭区间内二次函数的最值问题

结合图形讲解: 突出如下几点:

1、必须是“闭区间” a1≤x≤a2

2、关键是“顶点”是否在给定的区间内;

3、次之,还必须结合抛物线的开口方向,“顶点”在区间中点的左侧还是右侧综合判断。

处理《课课练》 P20“例题推荐”中例一至例三 略

四、小结:1。 调二次函数y=ax2+bx+c (a(0) 中三个“参数”的地位与作用。我们实际上就是利用这一点来处理解决问题。

2。 于二次函数在闭区间上的最值问题应注意顶点的位置。

五、作业: 《课课练》中 P21 6、7、8

《教学与测试》 P18 5、6、7、8 及“思考题”

第十六教时

教材: 一元二次方程根的分布

目的: 介绍符号“f(x)”,并要求学生理解一元二次方程ax2+bx+c=0 (a(0)的根的分布与系数a,b,c之间的关系,并能处理有关问题。

过程:

一、为了本课教学内容的需要与方便,先介绍函数符号“f(x)”。 如:二次函数记作f(x)= ax2+bx+c (a(0)

控制”一元二次方程根的分布。

例三 已知关于x的方程x2(2tx+t2(1=0的两个实根介于(2和4之间,求实数t的取值。

解:

此题既利用了函数值,还利用了 及顶点坐标来解题。

三、作业题(补充)

1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。(a<1)

2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。 (a<(3)

3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。

(m>7)

4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。

(a>2)

(注:上述题目当堂巩固使用)

5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。 ((m+2)2+(n+2)2<4)

6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。 (k<(4 或 k>0)

7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0

8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。 (2

9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。 ((9/40≤m<1)

10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。

解:如果在(1≤x≤1上有两个解,则

如果有一个解,则f(1)?f((1)≤0 得 m≤(5 或 m≥5

(附:作业补充题)

作 业 题(补充)

1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。

2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。

3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。

4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。

(注:上述题目当堂巩固使用)

5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。

6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。

7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0

8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。

9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。

10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。

作 业 题(补充)

1、 关于x的方程x2+ax+a(1=0,有异号的两个实根,求a的取值范围。

2、 如果方程x2+2(a+3)x+(2a(3)=0的两个实根中一根大于3,另一根小于3,求实数a的取值范围。

3、 若方程8x2+(m+1)x+m(7=0有两个负根,求实数m的取值范围。

4、 关于x的方程x2(ax+a2(4=0有两个正根,求实数a的取值范围。

(注:上述题目当堂巩固使用)

5、设关于x的方程4x2(4(m+n)x+m2+n2=0有一个实根大于(1,另一个实根小于(1,则m,n必须满足什么关系。

6、关于x的方程2kx2(2x(3k(2=0有两个实根,一根大于1另一个实根小于1,求k的取值范围。

7、实数m为何值时关于x的方程7x2((m+13)x+m2(m(2=0的两个实根x1,x2满足0

8、已知方程x2+ (a2(9)x+a2(5a+6=0的一根小于0,另一根大于2,求实数a的取值范围。

9、关于x的二次方程2x2+3x(5m=0有两个小于1的实根,求实数 m的取值范围。

10、已知方程x2(mx+4=0在(1≤x≤1上有解,求实数m的取值范围。

第十七教时

教材: 绝对值不等式与一元二次不等式练习课

《集合》教学设计 篇八

一、问题情境

1.在初中,我们学过哪些集合?

2.在初中,我们用集合描述过什么?

学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.

3.“集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:

“全体”、“一类”、“一群”、“所有”、“整体”,……

二、建立模型

1.集合的概念(先具体举例,然后进行描述性定义)

(1)某种指定的对象集在一起就成为一个集合,简称集.

(2)集合中的每个对象叫作这个集合的元素.

(3)集合中的元素与集合的关系:

a是集合A中的元素,称a属于集合A,记作a∈A;

a不是集合A中的元素,称a不属于集合A,记作a

例:设B={1,2,3},则1∈B,4

2.集合中的元素具备的性质

(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.

(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.

例:若集合A={a,b},则a与b是不同的两个元素.

(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.

3.常用的数集及其记法

全体非负整数的集合简称非负整数集(或自然数集),记作N.

非负整数集内排除0的集合简称正整数集,记作N*或N+;

全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;

全体实数的集合简称实数集,记作R.

4.集合的表示方法

如何表示方程x2-3x+2=0的所有解?

(1)列举法

例:x2-3x+2=0的解集可表示为{1,2}.

(2)描述法

例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.

②不等式x-3>2的解集可表示为{x|x-3>2}.

③Venn图法

5.集合的分类

(1)有限集:含有有限个元素的集合.例如,A={1,2}.

(2)无限集:含有无限个元素的集合.例如,N.

(3)空集:不含任何元素的集合,记作

注:对于无限集,不宜采用列举法.

三、解释应用

1.用适当的方法表示下列集合。例如,{x|x2+1=0,x∈R}=.B.A.

(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.

(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.

2.用不同的方法表示下列集合.

(1){2,4,6,8}.

(2){x|x2+x-1=0}.

(3){x∈N|3<x<7}.

3.已知A={x∈N|66-x∈N}.试用列举法表示集合A.

(A={0,3,5})

4.用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.

[练习]

1.用适当的方法表示下列集合.

(1)构成英语单词mathematics(数字)的全体字母.

(2)在自然集内,小于1000的奇数构成的集合.

四、拓展延伸

把下列集合“翻译”成数学文字语言来叙述.

(1){(x,y)|y=x2+1,x∈R}.

(2){y|y=x2+1,x∈R}.

(3){(x,y)|y=x2+1,x∈R}.

(4){x|y=x2+1,y∈N*}.

这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.

我在本节课的教学中做这样的调整,主要是考虑到自己所带学生的接受能力与本节课的要求,无论是知识层次呈现顺序的调整,还是议一议中学生熟悉的函数的给出,目的都是让学生感觉到本节课与初中所学知识的连贯性,从而很好地达到本节课的教学目标。

集合的基本运算教学设计 篇九

一。教学目标:

1、知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集。

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用。

2、过程与方法

学生通过观察和类比,借助Venn图理解集合的基本运算。

3、情感。态度与价值观

(1)进一步树立数形结合的思想。

(2)进一步体会类比的作用。

(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。

二。教学重点。难点

重点:交集与并集,全集与补集的概念。

难点:理解交集与并集的概念。符号之间的区别与联系.

三。学法与教学用具

1、学法:学生借助Venn图,通过观察。类比。思考。交流和讨论等,理解集合的基本运算。

2、教学用具:投影仪。

四。教学思路

(一)创设情景,揭示课题

问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?

引导学生通过观察,类比。思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知

l.并集

—般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。

记作:A∪B.

读作:A并B.

其含义用符号表示为:

用Venn图表示如下:

请同学们用并集运算符号表示问题1中A,B,C三者之间的关系。

练习。检查和反馈

(1)设A={4,5,6,8),B={3,5,7,8),求A∪B.

(2)设集合

让学生独立完成后,教师通过检查,进行反馈,并强调:

(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次。

(2)对于表示不等式解集的集合的运算,可借助数轴解题。

2、交集

(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合A.B与集合C之间有什么关系?

②B={|是新华中学2004年9月入学的高一年级同学},C={|是新华中学2004年9月入学的高一年级女同学}。

教师组织学生思考。讨论和交流,得出结论,从而得出交集的定义;

一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集。

记作:A∩B.

读作:A交B

其含义用符号表示为:

接着教师要求学生用Venn图表示交集运算。

(2)练习。检查和反馈

①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系。

②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义。

学生独立练习,教师检查,作个别指导。并对学生中存在的问题进行反馈和纠正。

(三)学生自主学习,阅读理解

1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:

(1)什么叫全集?

(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?

(3)已知集合。

(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求。

在学生阅读。思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价。

(四)归纳整理,整体认识

1.通过对集合的学习,同学对集合这种语言有什么感受?

2.并集。交集和补集这三种集合运算有什么区别?

(五)作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

2.请你举出现实生活中的一个实例,并说明其并集。交集和补集的现实含义。

3.书面作业:教材第12页习题1.1A组第7题和B组第4题。