高考数学应该是大家最担心的科目了,毕竟很多人不擅长数学啊。数学考试有什么答题技巧可以试试的呢?它山之石可以攻玉,以下是爱岗敬业的小编醉清风帮大家整理的5篇高考数学答题技巧的相关范文,仅供借鉴,希望可以帮助到有需要的朋友。
高考数学答题策略 篇一
一、会做与得分的关系
要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系
有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系
拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系
在目前题量大、时间紧的情况下,准字则尤为重要。只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。
高考实用数学复习方法 篇二
一、夯实基础知识
高考数学题中容易题、中等题、难题的比重为3:5:2,即基础题占80%,难题占20%。无论是一轮、二轮,还是三轮复习都把“三基”即基础知识、基本技能、基本思想方法作为重中之重,死握一些难题的做法非常危险!也只有“三基”过关,才有能力去做难题。
二、建构知识网络
数学教学的本质,是在数学知识的教学中,把大量的数学概念、定理、公式等陈述性知识,让学生在主动参与、积极构建的基础上,形成越来越有层次的数学知识网络结构,使学生体验整个学习过程中所蕴涵的数学思想、数学方法,形成解决问题的产生方式,因此,在高考复习中,在夯实基础知识的基础上,把握纵横联系,构建知识网络。在加强各知识块的联系之后,抓主干知识,理清框架。
三、注重通性通法
近几年的高考题都注重对通性通法的考查,这样避开了过死、过繁和过偏的题目,解题思路不依赖特殊技巧,思维方向多、解题途径多、方法活、注重发散思维的考查。在复习中千万不要过多“玩技巧”,过多的用技巧,会使成绩好的学生“走火入魔”,成绩差的学生“信心尽失”。
四、提高运算能力
五、答题严谨规范
学生答题存在许多小错误,太多的小错误,累积起来影响了最后的成绩。在复习中和试卷的评讲中,要不厌其烦告诫学生,注重推理的完整性,特别是“立体几何” 中的推理过程;注意数学符号的严格性,以及字迹工整、如何涂改,在规定范围内答题每年都要向学生讲明白,养成严谨规范的作风。
阶段复习、系统小结
从时间来划分,如周复习、期中复习、期末复习、毕业复习、升学复习等,从知识上来划分,如章节复习、单元复习、总复习等,都可称做阶段系统复习。
1、阶段系统复习的任务
(1)强化记忆,使学习的成果牢固地贮存在大脑里,以便随时取用。
专家实验发现刚记住的材料,一小时后,只能保留44%,两天后只剩下25%,可见所有的人都会发生先快后慢的遗忘过程。有的学者认为,经过学习,在大脑形成了一定的神经联系,这种联系,如果不通过反复的,有效的刺激来强化,那么就会慢慢消退,表现为遗忘现象。采用各种方法来进行复习,正是为了强化和完善这种神经系统。理解了的知识便于记忆,这是对的,但理解了的知识还要通过复习才能真正记牢。记性好的同学,不仅重视理解,而且重视复习。他们每天有复习,每周有小结,每章有总结,多次地从不同角度,不同层次上进行复习,从而产生了良好的记忆效果。
(2)查漏补缺,保证知识的完整性。
影响学习的因素很多,在一个漫长的学习过程中,很难保证各种因素都处于最佳状态,因此,难免出现漏洞和欠缺,通过复习,自己检查出来后,就可以及时补上,保证所学知识的完整性和系统性。凡是抓紧复习的同学,学习中的漏洞和欠缺,都能及时地得到补正,因此,他们的知识总是比较完整的。
(3)融会贯通,使知识系统化。
智慧不是别的,而是一种组织起来的知识体系。这里所说的“一种组织起来的知识体系”就是指系统化的知识。可以说,形成系统化的知识是系统复习的中心任务。通过平时分科、分章、分节的学习,可以说基本完成了对各种基本概念、基础知识的理解任务。通过复习,全面回顾,查漏补缺,又保证了知识的完整性,但这时同学们对事物的`认识还没有完成,复习的中心任务也没有完成,为什么呢?因为头脑中的知识这时还是“半成品”,需要采取分析综合,比较归类,抽象概括,归纳演绎等思维方法,把长期学习的各部分知识“组装”起来,融会贯通,透彻理解,使之形成系统化知识。这时,才能说完成了学习过程的全部任务。
2、阶段系统复习的程式和方法
阶段复习必须注意做好“三准备”,即主题准备、时间准备和材料准备。
(1)主题准备。
复习之前一定要明确这次复习的中心内容,复习时要围绕这个中心内容来进行。如果不明确中心内容,拿起课本从头捋到尾,不能称之为复习,只能算是一种重复,最多起到一个熟悉的作用,知识还是分散的,构不成体系,效果并不好。 [page]
(2)时间准备。
由于阶段复习要看、要想、要查资料,还要写复习笔记,量比较大,因此复习的内容和复习的时间都必须相对集中,可以采取主动分配、被动安排两种方法。时间的主动分配,即根据复习的内容安排若干天,每天或每隔一两天复习一部分内容,若干天后全部内容复习完。
时间的被动安排,即复习的时间有限,不能任意安排,就要计算一下从复习开始到考试一共有多少时间,需要复习的内容有多少。如果时间不够用,那就要根据时间的许可,调整复习内容,熟悉的内容略去,保证重点学科等。 这样,虽然每天完成学习任务之后,所剩的时间不多,但是由于时间安排得当,可以避免出现手忙脚乱的情况。
(3)材料准备。
当复习的中心内容确定后,一切与中心内容有关的课本、笔记、作业、试卷和参考书都应当尽可能准备齐全,复习时专心思考,需要查阅时资料伸手可得。阶段复习的程式应该是这样的:
第一步:先回忆后看书
和课后复习一样,阶段复习进行时,也是先不看书,尽可能地独立思考回忆。遇到难题或不理解的内容,也不要忙于翻书,先自己想想看,实在想不起来才去看课本。这样做,是逼着自己动脑筋,有助于强化记忆,提高学习效率。
第二步:先看题后做题
阶段复习时对于过去做过的习题有必要再温习一遍。不过,不是一题不落地再做一遍,也不要一题也不做。看题是把书上的练习、日常的作业、阶段测验的试卷,从头到尾看一遍。看题的时候,只看题目,理清解题思路,会做的可以与原先的做法相对照比较,不会做的再看原先是怎么解的,自己这次“卡壳”是卡在什么地方,然后再做一遍。
除了看题之外,有必要选择部分习题做一做,尤其是选一些综合性习题做一做。因为平时学习所做的习题都是为了练习当时讲课的内容,都是个别的。而<www.kaoyantv.com>综合性习题则要运用本章或本体系的全部知识才能解答,因此,做一些综合性习题是阶段复习中用来巩固知识、熟练运用知识的必要的方法。通过做综合题使知识系统化、完整化。
第三步:先复习后笔记
阶段复习结束之前,应当把复习的成果记录下来。复习的成果可以包括通过复习而获得的系统知识,新的体会,新的解题方法,自己的难点弱点等等。复习笔记不是课堂笔记的翻版,而应当是简洁明了,高度概括。如同你进入知识领域的一名向导,靠着它可以把你引入知识的各个角落。换句话说,看着复习笔记可逐一回忆起课本上相关的内容。
3、阶段系统复习的基本要求
(1)复习前要抓紧平时学习时间,做好准备工作。要利用平时零星的时间,围绕复习中心内容把有关的笔记、书本、作业、试卷和参考书等一一准备好。
(2)复习围绕一个中心内容来进行。
复习时,首先要确定复习的中心内容,这个中心内容要按照知识的体系来确定。在复习时,从内容上来说,尽量选择与讲新课关系最密切的内容来复习,这样,不仅完成了复习任务,而且还可以推动新课的学习,另外,每次复习的内容不要太多,要适当,要注意文理交替。
(3)要坚持用循环复习的方法。
所谓“循环复习法”是:在学完一部分内容后,及时地进行一次复习。接着就是学习下一部分内容。学完了后再进行第二次复习。后一次复习要包括前一次复习的内容。如此继续下去,一环套一环。同时,学到一定阶段,要把整个复习的内容分成若干单元,每个单元复习后都要搞一次大循环。内容多的还可以穿插循环。
(4)要做点综合性题目。
目的是检验复习的效果,加深对知识理解,培养运用知识解决问题的能力。选什么题,要围绕复习的中心来确定,重点是做点综合性的习题。综合习题类型和复习时所涉及的知识范围要一致,用做综合题来进一步使知识完善化和系统化,并以此培养自己综合运用知识的能力。
(5)要有集中的时间和安静的环境。
复习时,要处理较多的知识,要看、要想、要写、要查资料、要设计系统表和比较表等等。这是比较费时间的脑力劳动,因此需要一个比较集中的时间和不受干扰的安静环境。否则就会因为时间和环境的问题打断正常复习思路,影响复习效果。
(6)制作复习笔记。
在复习时,通过艰巨的思考形成了完整而系统的知识,应当珍惜这个学习成果,及时用笔记形式记录下来,以备今后使用。重视复习笔记,把握知识的精华,考试时就一定会取得优异成绩。
高考数学答题套路 篇三
1、 三角变换与三角函数的性质问题
(1)解题路线图
①不同角化同角
②降幂扩角
③化f(x)=Asin(ωx+φ)+h
④结合性质求解。
(2)构建答题模板
①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2、 解三角形问题
(1)解题路线图
① a 化简变形;b 用余弦定理转化为边的关系;c 变形证明。
② a 用余弦定理表示角;b 用基本不等式求范围;c 确定角的取值范围。
(2)构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3、 数列的通项、求和问题
(1)解题路线图
①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
(2)构建答题模板
①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
4、 利用空间向量求角问题
(1)解题路线图
①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
(2)构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
③求向量:求直线的方向向量或平面的法向量。
④求夹角:计算向量的夹角。
⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
5、 圆锥曲线中的范围问题
(1)解题路线图
①设方程。
②解系数。
③得结论。
(2)构建答题模板
①提关系:从题设条件中提取不等关系式。
②找函数:用一个变量表示目标变量,代入不等关系式。
③得范围:通过求解含目标变量的不等式,得所求参数的范围。
④再回顾:注意目标变量的范围所受题中其他因素的制约。
6、 解析几何中的探索性问题
(1)解题路线图
①一般先假设这种情况成立(点存在、直线存在、位置关系存在等)
②将上面的假设代入已知条件求解。
③得出结论。
(2)构建答题模板
①先假定:假设结论成立。
②再推理:以假设结论成立为条件,进行推理求解。
③下结论:若推出合理结果,经验证成立则肯。 定假设;若推出矛盾则否定假设。
④再回顾:查看关键点,易错点(特殊情况、隐含条件等),审视解题规范性。
7、 离散型随机变量的均值与方差
(1)解题路线图
① a 标记事件;b 对事件分解;c 计算概率。
② a 确定ξ取值;b 计算概率;c 得分布列;d 求数学期望。
(2)构建答题模板
①定元:根据已知条件确定离散型随机变量的取值。
②定性:明确每个随机变量取值所对应的事件。
③定型:确定事件的概率模型和计算公式。
④计算:计算随机变量取每一个值的概率。
⑤列表:列出分布列。
⑥求解:根据均值、方差公式求解其值。
8、 函数的单调性、极值、最值问题
(1)解题路线图
① a 先对函数求导;b 计算出某一点的斜率;c 得出切线方程。
② a 先对函数求导;b 谈论导数的正负性;c 列表观察原函数值;d 得到原函数的单调区间和极值。
(2)构建答题模板
①求导数:求f(x)的导数f′(x)。(注意f(x)的定义域)
②解方程:解f′(x)=0,得方程的根。
③列表格:利用f′(x)=0的根将f(x)定义域分成若干个小开区间,并列出表格。
④得结论:从表格观察f(x)的单调性、极值、最值等。
⑤再回顾:对需讨论根的大小问题要特殊注意,另外观察f(x)的间断点及步骤规范性。
高考数学应试答题技巧 篇四
1.调整好状态,控制好自我。
(1)保持清醒。数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信。
刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。答题时,见到简单题,要细心,莫忘乎所以。面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度。
数学选择题是知识灵活运用,解题要求是只要结果、不要过程。因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。填空题也是只要结果、不要过程,因此要力求“完整、严密”。
高考数学偷分技巧
1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,关系。大题角度是个很重要的结论,然后你可以乱吹些上去,最后写出结论。
2.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。
3.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
4.立体几何中,求二面角B-OA-C的新方法。利用三面角余弦定理。设二面角B-OA-C是∠OA,∠AOB是α,∠BOC是β,∠AOC是γ,这个定理就是:cos∠OA=(cosβ-cosαcosγ)/sinαsinγ。知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了,还来得及,试试?
高考数学大题答题技巧 篇五
一、三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题
1、证明线面位置关系,一般不需要去建系,更简单;
2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。