1. 主页 > 范文大全 >

五年级下册数学总结 五年级下册数学知识点总结【优秀14篇】2-15-91

日子如同白驹过隙,不经意间,我们的工作又将告一段落了,相信大家在这段教学实践中都积累了属于自己的教学感悟,是时候抽出时间写写教学总结了。那么什么样的教学总结才是好的教学总结呢?书痴者文必工,艺痴者技必良,本页是爱岗敬业的小编给大家分享的五年级下册数学知识点总结【优秀14篇】,欢迎借鉴,希望对大家有所启发。

五年级数学下册知识总结 篇一

整除的算式的特征:

1、除数、被除数都是自然数,且除数不为0。

2、被除数除以除数,商是自然数而没有余数。

例:15能被5整除,我们就说,15是5的

倍数,5是15的因数。

知识点一:因数

问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?

所以12的因数有:

注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。

例1 18的因数有那些?

方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6

方法二:根据整除的意义得到

18÷1=18 18÷2=9 18÷3=6

所以18的因数有:

表示方法:

1、列举法︰12的因数有:1,2,3,4,6,12

2、用集合表示︰

练习1:30的因数有哪些?36呢?

30的因数有:

36的因数有:

观察:18的最小因数是(),的因数是()

30的最小因数是(),的因数是)

36的最小因数是(),的因数是()

一个数的因数的个数是有限的,一个数的最小因数是(),因数是()

你要知道:

(1)1的因数只有1,的因数和最小的因数都是它本身。

(2)除1以外的整数,至少有两个因数。

(3)任何自然数都有因数1。

知识点二:倍数

问题二:2的倍数有哪些?

2的倍数有:2,4,6,8 …

例1、小蜗牛找倍数(找出3的倍数)。

练习3、5的倍数有哪些?7的倍数呢?

5的倍数:

7的倍数:

一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。

用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

1、根据算式:4×8=32

说一说,谁是谁的因数?谁是的倍数?

2、根据算式:63÷7=9

说一说,谁是谁的因数?谁是的倍数?

3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

知识点三:质数和合数

1、自然数按因数的个数来分:质数、合数、1、0四类。

(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)1:只有1个因数。“1”既不是质数,也不是合数。

注:

①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个()

④ 100以内的质数有25个:()

关系:奇数×奇数=奇数质数×质数=合数

2、常见、最小

A的最小因数是:1;最小的奇数是:1;

A的因数是:本身;最小的偶数是:0;

A的最小倍数是:本身;最小的质数是:2;

最小的自然数是:0;最小的合数是:4;

3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

例:

分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3

4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:

分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:

5、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7

两个合数的互质数:8和9

一质一合的互质数:7和8

6、两数互质的特殊情况:

⑴1和任何自然数互质;

⑵相邻两个自然数互质;

⑶两个质数一定互质;⑷2和所有奇数互质;

⑸质数与比它小的合数互质;

三、经验之谈:

书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;

短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数

图形的变换

1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

五年级数学下册知识总结 篇二

1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

找因数的方法:

一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按是否是2的倍数来分:奇数偶数

奇数:不是2的倍数

偶数:是2的。倍数(0也是偶数)

最小的奇数是1,最小的偶数是0.

个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.

质数:有且只有两个因数,1和它本身

合数:至少有三个因数,1、它本身、别的因数

1:只有1个因数。“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)

100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

43、47、53、59、61、67、71、73、79、83、89、97

4、分解质因数

用短除法分解质因数(一个合数写成几个质数相乘的形式)

5、公因数、公因数

几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

几个数的公因数只有1,就说这几个数互质。

两数互质的特殊情况:

⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;

⑷2和所有奇数互质;⑸质数与比它小的合数互质;

6、公倍数、最小公倍数

几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

如果两数是倍数关系时,那么较小的数就是它们的公因数;

较大的数就是它们的最小公倍数。

如果两数互质时,那么1就是它们的公因数

它们的积就是它们的最小公倍数。

小学数学四大领域主要内容

数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

统计与概率:收集、整理和描述数据,处理数据;

实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

数学做计算题型时需要注意什么

(1)认真读题,仔细审题;

(2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克×4=128千克;

(3)应用题在算式中要在得数后加括号,填上单位名称。

例:一筐苹果重5千克,8箱苹果重多少千克?5×8=40(千克)

五年级数学下册知识总结 篇三

1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

2、分母越大,分数单位越小,最大的分数单位是2(1)。

3、举例说明一个分数的意义:7(3)表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。7(3)吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。

4、4米的5(1)和1米的5(4)同样长。

5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

7、男生人数是女生人数的4(3),则女生人数是男生人数的3(4)。

8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。

被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,3(4)就可以看作是3(3)(就是1)和3(1)合成的数,写作

13(1),读作一又三分之一。带分数都大于真分数,同时也都大于1。

11、把分数化成小数的方法:用分数的分子除以分母。

12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

18、一些特殊分数的值:

2(1)=0.54(1)=0.254(3)=0.755(1)=0.25(2)=0.45(3)=0.6

5(4)=0.88(1)=0.1258(3)=0.3758(5)=0.6258(7)=0.87510(1)=0.116(1)=0.0625

16(3)=0.187516(5)=0.312520(1)=0.0525(1)=0.0450(1)=0.02100(1)=0.01

19、求一个数是(占)另一个数的几分之几,用除法列算式计算。

小学五年级数学下册总结 篇四

本班学生绝大部分上课能够专心听讲,积极思考并回答老师提出的题,下课能够按要求完成作业,具有良好的学习习惯。但是也有一部分学生的学习习惯不好,有的上课精力不集中,思想经常开小差,纪律性不强。老师布置的作业完不成,以致学习成绩不理想,为了激发学生的数学学习兴趣,针对本班的实际情况,对本学期的教学情况做如下总结,以利今后更好的上好这门课。

一、主要成绩和经验

1、认真钻研教材、精心备课,充分利用直观、电化教学,把难点分到各个层次中去,调动学生学习的积极性。

2、针对学生的差异和年龄特点,对学生进行了各方面的教育,使学生的知识、能力有了较大提高。

3、本学期我对学生注重加强了思想教育,培养了良好的学习习惯,培养自我检查的能力。

4、使学生学好数学知识,在教学中重点做到精讲多练,重视运用教具、学具和电化教学手段。认真备好每一节课。

5、加强对后进生的辅导,使本学期大部分学生能掌握知识、技能,他们的学习有了不同程度的进步和提高。

6、通过练习课的精心设计,使学生掌握知识,形成技能,发展智力。所以我认真上好练习课,讲究练习方式,提高练习效率。

7、注重专题研究,积极参加学校组织的教学教研活动,认真组织好练习和复习,努力提高教育、教学质量。

8、重视了与家庭教育相配合,通过家访,与家长密切联系,对个别学生的教育着重放在学生非智力因素的挖掘上,使他们有了明显

的进步和提高。

9、注重培养了学生的学生习惯,针对这一方面,本学期重点抓了学生,每做一件事情,每做一道题,要求学生要有耐心,培养了认真做好每一件事的好习惯。

二、存在的不足之处

1、一部分学生对学习的目的不够明确,学习态度不够端正。上课不认真听讲,家庭作业经常完不成。

2、有些家长对孩子的学习不够重视,主要表现在:学生家长不配合,造成了学习不好。

3、还有一部分是,反映问题慢,造成了不及格现象。

三、今后努力方向和设想

针对本学期在教学工作中存在的问题和不足,在今后的工作中着重抓好以下几点:

1、结合教材的内容,要精心备课,面向全体学生教学,抓牢基础知识,搞好思想教育工作。精心上好每一节课,不断提高自身的业务水平。注重学生各种能力的培养和知识应用的灵活性。特别注重学习习惯的培养,以激发学生学习的兴趣,提高他们的学习成绩,自己还要不断学习,不断提高自身的业务素质。

2、及时辅导后进生,抓住他们的闪光点,鼓励其进步。注重学生各种能力和习惯的培养。

3、充分利用直观、电化教学,把难点分到各个层次中去,调动学生学习的积极性。对学生进行强化训练,争取教出更好的成绩。

4、充分利用数学教材,挖掘教材的趣味性,以数学知识本身的魅力去吸引学生、感染学生。

5、数学课的开展应面向全体的情况下,实施因材施教。充分调动学生的学习的积极性和主动性。

6、及时家访,与家长配合抓好学生的学习,养成做好每一件事的好习惯。

总之,一学期下来,工作有得有失,今后我一定会取长补短,力争做到更好。

小学五年级数学下册总结 篇五

一、以课堂为核心,提高教学效率

1、认真备课。

认真准备课堂内容,做到具有实效性。对我来说,去年已经带过一年的五年级数学,但版本不一样,对人教版的教材比较陌生,要想在课堂上运用自如,课下必须下足功夫,所以我熟读教材,掌握每一部分知识在单元中、在整册书中的地位、作用。思考学生怎样学,学生将会产生什么疑难,该怎样解决。课下,针对在课堂上出现的问题及时进行反思为什么,究竟是我的教学方法有问题,还是没有把握住教材的重难点,然后在下节课查缺补漏。此外,在备课本中我体现教师的引导,学生的主动学习过程。再联系以前的教学经验认真设计练

2、上课。

(1) 充分利用网络资源,我在教学中积极利用多媒体的动感性,直观性,尽可能的把教学中的重难点,简单化,然学生对数学充满兴趣,在轻松的课堂中掌握知识。

(2)创设各种情境,激发学生思考。在教学中我注重利用学生身边的事和数来创设问题情境,对高年级的孩子来说,动手操作比说教更能吸引他们的注意,让学生动手操作激发学生的学习兴趣,然后放手让学生去探究,在自主探索中获取知识,获得快乐。

(3)注重评价。在平时的课堂教学中,我采用一些奖励措施对学生进行评价。根据每个学生在课堂上的不同表现,采用加分的形式对其进行鼓励,每个学生都渴望被表扬鼓励,老师不经意的一句鼓励可能对孩子产生很大的鼓励作用。所以,在课堂上我不会吝啬我的掌声、我的微笑。

3、作业批改。

与上学期相比,本学期在作业方面进行了多方面的改变,注重了作业的实效性、情感性、沟通交流性。作业本不仅是检查学生学习内容的掌握情况、还是我和学生情感交流的通道、教师改进教学的镜子。我从不搞题海战术,每次的作业量不大但我要求他们要有质量,通过作业本,我会发现学生在哪些知识点上掌握的不够,需要在下节课上加以强调。同时我也注重作业的评价,对做得好的表扬称赞,画个大大的笑脸,做得不好的加油鼓励。

两个班的数学程度不同,所以辅导时也不可能同步,二班的差生比较多辅导课就去的次数多,然他们反复练习一些较容易的题目,增强他们的信心。

二、注重学生习惯的养成

良好的学习习惯,可以使学生轻松快捷地学好知识;不良的学习习惯,不仅增加学生学习的负担,而且有损于学生的身心健康。如果学生具有良好的学习习惯,那么学习知识就会事半功倍。所以在本学期,我非常注重培养学生的学习习惯。例如,认真书写、上课认真听讲、积极回答问题、及时总结反思、学会阅读课本等一般习惯养成和特殊习惯养成,并在各方面都有了不同程度的提高。学生接受知识更快更有效了。

三、积极提高自身修养积极

1、不断充实自己。学如“逆水行舟,不进则退”,时代在变迁,如果不及时充实自己的大脑,你就会被淘汰。所以,在本学期我认真阅读学校订阅的一些小学教育报,认真利用学校为我们提供的丰富的网络教育资源。

2、积极参与学校的专项研究,打造快乐高效的数学课堂。通过积极参与学校的优质课教学活动、各种教研活动,学习新的教学方法和教学模式,并运用于自己的课堂。

3、积极参加学校的论语背诵活动,提高自己文学修养的同时可以借鉴古代教育大家的教育理念,教育方法,受益颇深。

总体看来,这学期有进步,也存在着很多不足,如在教学中,课堂语言不简单明了等,在以后的教育教学中我努力逐步树立素质教育观念和新课程标准理念,争取更加的优秀、完美,继续保持我所教学生百分之百的优秀,超越自我,挑战自己,既是最好,还要更好。

五年级下册数学总结 篇六

一学年以来,在学校领导的关心与支持下,我在“培优补差”工作过程中,能根据学生实际情况,有步骤、有措施地落实学期初制定的“培优补差”计划,充分发挥优等生的优势,关注后进生,不让每一个学生落队,使学生都能较好的得到发展。通过内化教育,学生的学习动机、学习积极性大大地被调动起来,不管是优等生或是学困生,现已能明确自己的学习目的,不是为别人,而是为自己;学习风气较以前有明显的变化,以前是“要我学”,现在是“我要学”。通过不断的加强训练,帮助学生获取一个个小成功,学生的自信心、意志力得到很大的提高。现将一学期来的培优补差工作总结如下:

一、转化后进生

后进生转化是每位教育工作者常抓不懈的重要课题,后进生形成的原因很多,有的是没有形成良好的学习习惯,有的是知识水平和接受能力较差,逐渐导致他们产生厌学、自卑等不良心理品质,自暴自弃,没有上进心。针对这种情况,我采取了以下措施:了解后进生的个性特点及落后的原因,情感上尊重学生,我经常给他们更多的关爱,及时发现并放大他们的闪光点,激励他们上进,用爱心感化他们。同时也发挥班集体的力量,把学生分成四人小组,结成帮扶对子,通过小组比赛激发他们的进取心;多和家长沟通,积极争取到了家长的配合和支持,帮助他们找到适合自己的学习方法。

二、培养优等生

面对班级里一部分能力较强的学生,课本知识已满足不了他们的求知欲,所以我就鼓励他们多学一些课本以外的知识,并制定了一些奖励措施,提高他们学习课外知识的积极性。另一方面,我也在学生写完课堂作业以后,出几道奥数题,并采用学生易于掌握、理解的方法给学生讲解奥数题,培养学生兴趣。通过一个学期的实践,对于一些灵活多变的、有一定难度的题目,班里的优等生都能积极开动脑筋,想办法解决,每解决一道难题,学生就体会到了成功的喜悦。

三、发展中等生

班级中最不受关注的往往是中等生,他们没有明显闪光点,学习成绩又不是很差,如果教师不重视这一群体,就会使这一部分学生身上潜藏的积极因素难以得到发展。所以,我在平时的教学中,多关注这部分学生,多给他们提供课堂发言的机会,用欣赏的目光看待他们,让他们感受到成功的喜悦,被老师关注的幸福,增强自信心。

五年级下册数学知识点总结 篇七

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。如:0.6÷0.3表示已知两个因数的积0.6,一个因数是0.3,求另一个因数是多少。

2、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

小学五年级数学下册总结 篇八

本学期,我担任学校五(x)、五(x)班的数学教学工作。我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推“自主——合作——创新”课堂教学模式的同时,将小课题研究“联系生活实际学数学”实践于课堂教学中,把新课程标准的新思想、新理念和数学课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。

一、激发学生学习兴趣,让他们能够感受成功、体验到学习数学的快乐。

这两个班的学生,一直以来,由于习惯不好,成绩不太理想,随着年级的递增,数学知识点的增多,知识面的扩展,学生越来越感到学习数学的困难,面对形式多样的解题 www.kaoyantv.com 方式更是无法应对,就学习尽头来说是心有余而力不足。

为此,我采取的策略是先让学生感到学数学不难:

1、上课时我有意识的设计一些简单的问题叫学习困难的学生来回答,让他们板演一些基本的计算题,激励他们大胆的解答,并在适时的时候予以提示,是他们能在老师善意的帮助下顺利的解答,让他们从心理上感到解决数学问题不是太难,只要掌握基本的方法是可以触类旁通的;

2、第一环节实施后,我采取得第二步是在讲课时把知识生活化的方式,以学生常见的范例、经常接触的身边的数学问题为例,加以有声有色的描述,使学生感到学数学很有用,数学问题解决不好会出笑话,会影响自己的将来,要好好学数学,要学好数学,因为需要而产生学习数学的兴趣;

3、学生的兴趣被激发后,我首先想到的是保持,

(1)、注重从学生的作业上来反馈,将学生的问题和与优点添油加醋的加以评价

(2)、通过开展一些丰富多彩的数学活动,如讲数学家的故事,搞一些数学小竞赛,小组合作、作业评比、学生评价等等,积极发掘学生的闪光点,让学生的个性得以张扬,努力营造一个学数学的良好氛围,让学生体验学数学和做数学的快乐,使学生从思想上逐步扭转对数学的枯燥印象

(3)、利用各种机会,经常给不同层次学生以成就感,让每一位同学都能体验到学习数学的成功与快乐

一年来,成效显著:首先是学生敢于大胆回答问题了,其次是能基本清楚的描述解题思路了,再次就是作业正确率提高了,测试情况也有了较为明显的好转。

二、认真钻研业务,努力提高课堂40分钟的教学效率。

在业务上我积极利用各种机会,学习教育教学新理念,积极参加网络教研活动,精心打理博客内容(课堂教学中的案例、反思、故事、随笔等),潜心钻研教材教法,认真备课、认真上课,坚持不懈地进行“自我充电”,以提高自己的业务理论水平。

课堂上,我把学到的新课程理念结合本班实际,努力贯彻到课堂教学中去,以期提高课堂40分钟的效率。

课余,我经常与同事们一起探讨教学过程中遇到的各种问题,互相学习,共同提高;我还结合实际教学撰写一些自己平时的教学反思和经验总结点滴等等。

从中,我更是感受到了学无止境的道理。要充分发挥课堂教学这个“主阵地”的作用,提高课堂40分钟的效率,我们要与时俱进,坚持不懈地学习探究教学新理论新实践。

三、关爱学生与严格要求相结合,尽量使每一位学生进步。

亲其师,才能信其道。在平时与学生接触的过程中,我不以“师长”自居,尽量与学生平等交往,建立“朋友式”的深厚友谊,努力关爱每一位学生的成长。与学生多谈心,帮助学生解决学习上与生活上的各种困惑。

同时,面对个别调皮的学生,也实行严格要求、正确导向的办法,让他们树立起正确的荣辱观。课堂教学,纪律是提高课堂效率的重要保证。面对各层次的学生,我既要关爱大部分学生,又要面对个别不守纪律的捣蛋分子实行严格要求。

课堂上,我尽量做到分层施教与个别辅导相结合;课余,我让优秀学生与“学困生”实行“一帮一”结对子,互帮互助,共同提高。一学期来,学生们原本薄弱的基础,逐步得以夯实,学生的学习成绩有了稳步提高。

四、总结得失,以励再战。

1、取得的成绩:在我的努力带动下,学困生的脸上有了笑容了,作业基本能按时按量的完成了,学生们的学习兴趣较以前提高了,学习的态度也改变了不少,五年级期末考中心小学质量检测,本班名列同年级前列,我踏实、真诚、富有活力、勇于创新的工作作风,赢得了领导、同事、学生及其家长的良好口碑。

2、存在的不足:部分学生多年来形成的一些不良学习方法和习惯,还有待进一步规范和引导;学困生在起始年级的知识空缺(口算乘除法及其他)直接影响着计算的效率与质量,随着年级的增高表现也越来越明显;学习成绩虽然有所进步,但许多方面还有很大的提升空间;老师的付出与学生知识掌握的反馈(作业、成绩)使老师产生急躁的情绪。

3、努力方向:今后,我将继续本着“教到老,学到老”的精神,改变急躁的情绪,不断探讨提高学生学习兴趣、促进学生全面发展的有效机制;继续保持与学生家长的紧密联系,共同配合,把我们的下一代教育好,培养好,争取个人成长与学生成长实现双丰收。

五年级下册数学总结 篇九

一学期来,我自始至终以认真严谨的治学态度,勤勤恳恳、兢兢业业地从事教育教学工作。根据新课标精神要求完成了本学期的教育教学任务。现对本学期工作进行总结。

1、兴趣是最好的老师,在教学中我注重透过数学课内外教学,来激发学生学习兴趣和培养学生创造性思维活动。鼓励他们发表自我的见解,并引领他们多去尝试,找出规律。

2、倡导学生"主动参与、探究发现、合作交流"的学习方式。本学期教学中转化思想用得较多,这有利于学生探究、合作解决问题,从而提高了学习效率。

3、根据新《数学课程标准》的要求,既要面向全体学生,强调数学教学要以学生为本,教学中我即注重为所有学生打好共同基础时,注意发展学生的个性和特长,也就要注意处理好全体性和差异性之间的关系。

4、增强学生的动手实践活动,培养学生的空间观念。在观察物体这一单元中,利用模型让学生摆一摆,感受从不一样角度观察物体是不一样的,只有观察到物体的三个面才能确定物体的位置。从而培养了学生的动手潜力和空间想象力。

5、多创设学习情景,注意加强数学与实际生活联系,让学生在活动中解决数学问题,感受、体验和理解数学。在每节数学课中,我都尽量出示主题图,引领学生在具体情境中感受数学,收到了良好的效果。

6、充分利用好课堂时间,提高课堂教学效率,让学生在课堂上把本节课的教学资料很好地消化,课后透过适当的练习进行巩固。

7、控制好课后的作业量。本学期由于手足口病耽误课时,为了赶进度,后半学期作业量偏大,给师生带来必须的负担,以后要留好机动课时,尽量克服此类现象的发生。

8、给学困生更多的关心与爱心,作业适当降低要求。加强个别辅导,提高后进生的学习成绩。

以上是我对本学期工作的一点体会,期望能对今后的工作有所帮忙。

五年级数学下册知识总结 篇十

知识点概念总结

1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

2.小数乘法法则

先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

3.小数除法

小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

4.除数是整数的小数除法计算法则

先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

5.除数是小数的除法计算法则

先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

6.积的近似数:

四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

7.数的互化

(1)小数化成分数

原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

(2)分数化成小数

用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

(3)化有限小数

一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。

(4)小数化成百分数

只要把小数点向右移动两位,同时在后面添上百分号。

(5)百分数化成小数

把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

(6)分数化成百分数

通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(7)百分数化成小数

先把百分数改写成分数,能约分的要约成最简分数。

8.小数的分类

(1)有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。

(2)无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 …… 3.1415926 ……

(3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

(4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 …… 0.0333 …… 12.109109 ……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的。循环节。 例如: 3.99 ……的循环节是“ 9 ” ,0.5454 ……的循环节是“ 54 ” 。

9. 循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。

12.方程的解

使方程左右两边相等的未知数的值,叫做方程的解。

如果两个方程的解相同,那么这两个方程叫做同解方程。

13.方程的同解原理:

(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

14.解方程:解方程,求方程的解的过程叫做解方程。

15.列方程解应用题的意义:

用方程式去解答应用题求得应用题的未知量的方法。

16.列方程解答应用题的步骤

(1)弄清题意,确定未知数并用x表示;

(2)找出题中的数量之间的相等关系;

(3)列方程,解方程;

(4)检查或验算,写出答案。

17.列方程解应用题的方法

(1)综合法

先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。

(2)分析法

先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

18.列方程解应用题的范围 :小学范围内常用方程解的应用题:

(1)一般应用题;

(2)和倍、差倍问题;

(3)几何形体的周长、面积、体积计算;

(4)分数、百分数应用题;

(5)比和比例应用题。

19.平行四边形的面积公式:

底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边=ah

20.三角形面积公式:

S△=1/2*ah(a是三角形的底,h是底所对应的高)

21.梯形面积公式

(1)梯形的面积公式:(上底+下底)×高÷2。

用字母表示:(a+b)×h÷2

(2)另一计算公式: 中位线×高

用字母表示:l·h

(3)对角线互相垂直的梯形:对角线×对角线÷2

扩展资料

1.小数分类

(1)纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。

(2)带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。

(3)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111…… 0.5656 ……

(4)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222…… 0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。

2.循环节的表示方法

小数化分数分成两类。

一类:纯循环小数化分数,循环节做分子;连写几个九作分母,循环节有几位写几个九。

另一类:混循环小数化分数(问题就是这类的),小数部分减去不循环的数字作分子;连写几个9再紧接着连写几个0作分母,循环节是几个数就写几个9,不循环(小数部分)的数是几个就写几个0。

3.平行四边形的面积

平行四边形的面积等于两组邻边的积乘以夹角的正弦值;

4.三角形的面积

(1)S△=1/2*ah(a是三角形的底,h是底所对应的高)

(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)

(3)S△=abc/(4R) (R是外接圆半径)

(4)S△=[(a+b+c)r]/2 (r是内切圆半径)

(5)S△=c2sinAsinB/2sin(A+B)

五年级下册数学知识点总结 篇十一

(1)什么是棱?

两个面相交的边叫棱。

(2)什么是顶点?

三条棱相交的点叫顶点。

(3)什么是长方体的。长、宽、高?

相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?

长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?

长方体六个面的总面积叫长方体的表面积。

(6)什么是物体体积?

物体所占空间的大小叫做物体的体积。

五年级下册数学知识点总结 篇十二

1、平均数、中位数和众数的联系与区别:

①平均数:

一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

容易受极端数据的影响,表示一组数据的平均情况。

②中位数:

将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

它不受极端数据的影响,表示一组数据的一般情况。

③众数:

在一组数据中出现次数最多的数叫做这组数据的众数。

它不受极端数据的影响,表示一组数据的集中情况。

2、统计图:我们学过——条形统计图、复式折线统计图。

条形统计图优点:条形统计图能形象地反映出数量的多少。

折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

注:①画图时注意:一“点”(描点)、二“连”(连线)、三“标”(标数据)。

②要用不同的线段分别连接两组数据中的数。

五年级数学下册知识点归纳总结 篇十三

1、函数的奇偶性

(1)若f(x)是偶函数,那么f(x)=f(—x);

(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);

(3)判断函数奇偶性可用定义的等价形式:f(x)±f(—x)=0或(f(x)≠0);

(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

2、复合函数的有关问题

(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;

3、函数图像(或方程曲线的对称性)

(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

(3)曲线C1:f(x,y)=0,关于y=x+a(y=—x+a)的对称曲线C2的方程为f(y—a,x+a)=0(或f(—y+a,—x+a)=0);

(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a—x,2b—y)=0;

(5)若函数y=f(x)对x∈R时,f(a+x)=f(a—x)恒成立,则y=f(x)图像关于直线x=a对称;

(6)函数y=f(x—a)与y=f(b—x)的图像关于直线x=对称;

4、函数的周期性

(1)y=f(x)对x∈R时,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;

(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;

(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;

(6)y=f(x)对x∈R时,f(x+a)=—f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;

5、方程k=f(x)有解k∈D(D为f(x)的值域);

6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

7、(1)(a>0,a≠1,b>0,n∈R+);(2)l og a N=(a>0,a≠1,b>0,b≠1);

(3)l og a b的符号由口诀“同正异负”记忆;(4)a log a N= N(a>0,a≠1,N>0);

8、判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

9、能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

10、对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5)y=f(x)与y=f—1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)、

11、处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

12、依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题

13、恒成立问题的处理方法:

(1)分离参数法;

(2)转化为一元二次方程的根的分布列不等式(组)求解;

五年级下册数学知识点总结 篇十四

1、去括号法则内容

去括号法则,是数学科的一条法则。括号前面是加号时,去掉括号,括号内的算式不变。括号前面是减号时,去掉括号,括号内加号变减号,减号变加号。

法则的依据实际是乘法分配律。括号前面的符号,它是去括号后括号内各项是否变号的依据。

要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号。

2、去、添括号顺口溜

去括号、添括号,关键看符号,

括号前面是正号,去、添括号不变号,

括号前面是负号,去、添括号都变号。