1. 主页 > 范文大全 >

《小数的意义》的教案(优秀5篇)

作为一名教职工,时常需要用到教案,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?高考家长帮为大家分享了《小数的意义》的教案(优秀5篇),希望能够为大家的写作带来一些参考。

小数的意义教案 篇一

教学内容:教科书第50—51页的内容

学习目标:

1、知识目标:使学生了解小数的产生,理解小数的意义,掌握小数的计数单位及单位间的进率。

2、能力目标:使学生学会用小数正确表示图中阴影部分。

3、思想教育目标:培养学生的观察能力、抽象概括能力、动手操作能力。

学情分析:通过测量,当学生不能用整数表示的时候,需要一个新的知识即“小数”来表示,引出小数,然后根据米尺直观图引出十分之几、百分之几、千分之几的数都可用小数表示,从而概括出小数的意义。

教学重点:小数的意义。

教学难点:理解和概括小数的意义。

教学准备:米尺多媒体

教学过程:

一、操作引入

教师指着手中的米尺问:米尺有什么作用?当学生回答后。老师说现在咱们就用它来测量黑板的长有几米。

当老师测量三次后,指着剩下的部分问:剩下的部分还够不够1米?如果用米作单位还能用整米数来表示吗?

学生回答:不能。

师问:那用什么数来表示?

生答:可用小数来表示。

师说:对,可用小数表示,这种情况在日常生活中经长遇到。例如:在测量人的身高、物体的长度时经常遇到得不到整米数,这时咱们就用小数来表示。什么数是小数呢?这节课咱们就来学习这一内容。(板书课题:小数的意义)

二、教学小数的意义。

1、认识一、两位小数

出示例1主题图让生观察(1)师问:从图上看把1米平均分成几份?(生答:分成了10份),每份长多少分米?(生答:每份长1分米),1分米是1米的几分之几?(生答:是1米的十分之一),是几分之几米?(生答:是十分之一米),写成小数是多少米?(生答:0.1米)

用同样的方法引导学生把3分米写成0.3米。

教师结合学生的口答板书如下:

1分米→1/10米→0.1米。

3分米→3/10米→0.3米。

师问:分母是10的分数可以写成几位小数?一位小数可表示成几分之几的数?0.1表示几分之几?0.3表示几分之几?

(2)师问:把1米平均分成100份,每份长是多少厘米?1厘米是几分之几米?写成小数是多少米?

用同样的方法引导学生把7厘米、13厘米分别写成0.7米、0.13米

教师结合学生的回答板书如下:

1厘米→1/100米 →0.01米。

7厘米→7/100米→0.07米。

13厘米→13/100米→0.13米。

师问:从上面看分母是100的分数可以写成几位小数?两位小数表示几分之几的数?0.07表示几分之几?0.53表示几分之几?

2、认识三位小数

师问:若把1厘米平均分成10份,照这样分,可以把1米平均分成多少份?每1份是多少?1毫米是几分之几米?写成小数是多少米?8毫米是几分之几米?写成小数是多少米?13毫米是几分之几米?写成小数是多少米?

师问:从上面看分母是1000的分数可以写成几位小数?三位小数表示几分之几的数?0.013表示几分之几?

师结合学生的回答板书如下

1毫米→1/1000米→0.001米。

8毫米→8/1000米→0.008米。

13毫米→13/1000米→0.013米。

师说:若把1毫米平均分成10份,其中的一份或几份可用分母是10000的分数来表示,写成小数就是四位小数。同样我们也可以得到五位小数等。

3、抽象、概括小数的意义。

教师指着上面板书讲解:从上面可以看出,把1米平均分成10份,其中的1份或几份就可以用分母是10的分数来表示。它的单位是十分之一。再把1分米平均分成10份,也就是把1米分成了100份,其中的一份或几份就可以用分母是100的分数来表示。它的单位是百分之一。再把1厘米平均分成10份,也就是把1米分成了1000份,其中的1份或几份就可用分母是1000的分数来表示。它的单位是千分之一。等等

师问:1/10里面有几个1/100?1/100里面有几个1/1000?在这些分数中相邻两个单位间的进率是多少?”(10)“整数相邻两个单位间的进率是多少?”(10)

师述:因为整数和分数相邻两个单位间的进率都是10,因此这些分数可以仿照整数的写法,写在整数个位的右面,用一个圆点隔开,用来表示十分之几、百分之几、千分之几……的数,这样的数就叫小数。

一位小数表示十分之几,它的单位就是1/10,写作0.1;两位小数表示百分之几,它的单位就是1/100,写作0.01;三位小数表示千分之几,它的单位就是1/1000,写作0.001;

(三)课堂练习

1、做教科书第51页的例1及“做一做”的题。

让学生直接填在书上后订正。老师可强调做题时要看一看小数的单位和要求的单位是否与一致。

2、做教科书55页练习九的第1题

师让生直接做在书上,订正时让生说一说各是怎样想的。

3、做教科书55页练习九的第2题

师让生直接做在书上后订正。

4、练习九的第3题,通过填空的形式,加深学生对小数计数单位的认识。

5、练习九的第4题,通过手势比划用小数表示的长度,加深学生对小数十几意义的理解,同时进一步巩固长度单位的表象。

6、练习九的第5题,让学生写出各数中不同数位上的2表示的意思,让学生熟练掌握小数的各个数位及其技术单位,体会位值的含义。

(四)课堂小结

这节课你学习了那些内容?什么是小数?小数的计数单位有哪些?

三、板书设计:

小数的产生和意义

1分米→1/10米→0.1米。

3分米→3/10米→0.3米。

1厘米→1/100米 →0.01米。

7厘米→7/100米→0.07米。

13厘米→13/100米→0.13米。

1毫米→1/1000米→0.001米。

8毫米→8/1000米→0.008米。

13毫米→13/1000米→0.013米。

小学数学四年级下《小数的意义》教案 篇二

教学内容:教材第六册P88-89及练习二十一的第1、2题。

教学目标:

1.结合具体内容认识小数,知道以元为单位,以米为单位的小数的实际含义。

2.知道十分之可以用一位小数表示,百分之几可以用两位小数表示。

3.能识别小数,会读写小数。

教学重点:认识小数。

教学难点:知道十分之几可以用一位小数表示,百分之几可以用两位小数表示。

教具、学具准备:主题图,投影片,商标标签。

教学过程:

一、引入小数

1.出示文具标价牌。

开学了,妈妈给小华买了一些文具。

书包 45元 文具盒 18元 圆珠笔 3.50元

铅笔 0.20元 橡皮 0.15元 本 3元

(在黑板上依次贴出商品的标价牌。)

2.区别整数与小数。

请同学们仔细观察,你能不能把这些文具标价中的数分成两类?怎样分?

根据学生的回答,移动黑板的上文具标价牌分成两类。

书 包 45元 圆珠笔 0.50元

文具盒 18元 铅 笔 0.20元

本 3元 橡 皮 0.15元

左边这组数45、18、3是我们以前学过的,都是整数。准还能举出其他整数的例子?

3.引入课题。

右边这组数它们有一个什么特点?(数中间都有一个小圆点。)像这样的数叫做小数。(拿走黑板上三个整数标价牌。)今天我们就要学习一些关于小数的初步认识。

板书:认识小数

二、认识小数

1.你会读小数吗?

让学生试读文具标价的三个小数。

2.认识以元为单位小数的实际含义。

哪些同学已知道,它们分别表示多少钱?

元 角 分

3. 5 0 3元5角

0. 2 0 2角

0. 1 5 1角5分

3.完成88页表格中的填空。

4.你还在哪里见过小数?

三、教学例1

1.出示例1情景图。

让学生说出图意和图中同学们提出的问题。

2.引出以米为单位的一位小数。

出示米尺:把1米平均分成10份,每份是多少分米?用分数表示是1/10米,还可以写成0.1米。

3分米是几分之几米,还可以写成零点几米?

3.引出以米为单位的两位小数。

指着米尺问:把1米平均分成100份,每份是多少厘米?用分数表示是1/100米,还可以写成0.01米。

3厘米是几分之几米,写成小数是多少米?18厘米呢?

让学生把答案填在课本上。

4.小组讨论

王东身高1米30厘米,写成小数是( )米。

全班交流,写成1.30米和1.3米都对的。

5.学生类推:完成89页的“做一做”。

四、课堂练习

完成练习二十一的第1、2题。

板书设计:

元 角 分

3. 5 0 3元5角

0. 2 0 2角

0. 1 5 1角5分

小数的意义教案 篇三

【教学目标】

1.在现实情境中,能初步理解小数的意义,学会读写小数,体会小数与分数的联系。

2.在用小数进行表达的过程中,感受小数与生活的联系,增强数学学习的兴趣。

3.培养良好的学习习惯,提高学生的探究、归纳比较、抽象概括的能力。

【教学重、难点】

理解小数的意义。

【教学过程】

一、交流信息,引入课题

课前我们收集了一些关于小数的资料,老师选择了一些,谁愿意给大家介绍一下?

(1)一块橡皮0.3元;一张信封0.05元;一本练习本0.48元。

(2)一枚1分硬币的厚度大约是0.001米。

(3)老师用的签字笔笔芯是0.38毫米的。

(4)艾兰德 “维生素C含片”净含量:0.65克×120片。

(5)钱嘉容的家到学校大约有3.9千米,她的爸爸身高1.82米。

像0.3这样的一位小数三年级时我们已经认识,这些小数和它们有什么不一样?会读吗?只读小数,谁来读一读。

你们觉得读小数时需要提醒大家注意什么?(小数点前面的数和我们学过的整数一样读,小数点后面的数只要依次一个一个地读。)

【设计意图:学生的知识起点是三下时对一位小数的直观认识和刻画,这是教学的起点,也是思维的动点。通过找身边的小数,引发学生对小数的认识,激起进一步学习和探究的热情。教材为什么三下就安排初步认识小数,因为生活中小数随处可见,孩子不陌生,早些了解也便于孩子在生活中交流。孩子对小数不陌生,因此两位小数、三位小数虽课本没安排学习,但孩子的读法早已在生活中习得,因此小数的读写方法不作为本节课的教学重点,只课之初始阶段稍做提醒,指出读法中的注意点,即尊重孩子的实际情况。】

这节课我们将继续学习小数的意义。(板书课题:小数的意义)

二、教学例1,初步感知

1、出示例1。我们先来看第一条信息。

这些小数表示物品的单价。

如果你到商店去买这些物品,该怎样付钱呢?(课件出示: 3角 5分 48分)

谈话: 这里的0.3元用分数可以怎么表示?你是怎么想的?(板书:0.3元)

小结:1元=10角,3角是1元的3/10,可以写成0.3元。(板书:3/10元 0.3元)

2、初步认识两位小数。

你能仿照(0.3元)这样的思路说说0.05元和0.48元的意思吗?先独立想想,再同桌交流。(如果学生感到困难,提示:1元是多少分;1分是1元的几分之几;那5分呢?48分呢?可以怎样想?)

0.05元,谁来说说你是怎么想的?(同桌互相说说)

1元=100分,5分是1元的5100 ,可以写成0.05元;

0.48元谁来说?

1元=100分,48分是1元的48100 ,可以写成0.48元;

板书:5100 元 0.05元 48100 元 0.48元

3、看看这些小数,为什么(0.05)这里要写0?(因为是5分钱,1元=100分)几分钱用小数表示就是——,这里(0.48)为什么没有0?几角几分用小数表示就是——

【设计意图:小数的意义较为抽象,学生掌握起来有一定困难。但以元为单位的小数所表示的金额是学生在生活中已经初步认识了的,比较熟悉,这些经验能支持学生理解小数的意义,从而实现感性认识到理性认识的飞跃。在初步感知阶段,利用“0.3元该怎么付?”学生把元转化成角,进而追问0.3元用分数可以怎么表示?得出3角是1元的3/10,可以写成0.3元。充分运用学生已有的知识经验和生活经验,通过类比,迁移,为下面学习两位小数、三位小数等作好充分的准备。】

三、教学例2,概括意义

(一)进一步理解两位小数的意义。

1、刚才我们借助圆角分间的关系认识小数,其实还可以借助其它一些事物,这是一把米尺,把1米平均分成100份,每份长多少(1厘米)?为了方便看得清楚,我们截取一部分将它放大。想一想, 1厘米是1米的几分之一?用小数怎么表示?

投影:1米=100厘米,1厘米是1米的1/100,可以写成0.01米。

谁能这样完整的说说。(板书:1厘米 1/100米 0.01米)

2、4厘米和9厘米写成以“米”作单位的分数和小数各是多少?拿出练习纸,在第一题处填一填。和屏幕校对。谁来说说(4厘米)你是怎么想的?0.09米有多长?

(二)自主探究三位小数的意义。

1、出示第一屏,收集的小数信息:请同学们看第2条信息,读——0.001米?你认为它比要0.01米的长度——短!究竟有多长?

2、老师将米尺再截短再放大,现在你能在米尺上指出0.001米吗,并告诉大家你是怎样想。(能仿照刚才的思路说说想法)

谁再来说说0.001米的意思?板书:11000 米 0.001米

你能说一个毫米数,让大家像这样来说说吗?板书两个

3、练习纸上找到材料2完成填空。(课件出示,直接校对)

这些用米作单位的三位小数都表示1米的——千分之几。

(三)观察发现,概括意义

1、一起来观察板书,先竖着看看,再横着看,仔细观察这一行分数和对应的小数,你有什么发现?想一想四人小组交流。汇报

竖着看,这3个数量都是——相等的!下面两个数量的单位都是——相同的!这说明分数、小数之间有着密切的联系!(根据学生交流情况可适当擦去写板书,只留下分数、小数,便于观察、比较、抽象概括意义。)

从分数往小数看,什么样的分数可以直接写成小数呢?

看看下面的小数,可以分成几类?

从小数往分数看,一位小数、两位小数、三位小数各表示什么?还能往下想吗?四位小数呢?(表示万分之几)能想的完吗?

引导出示:分母是10、100、1000……的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

指出:这就是小数的意义,引导学生完整的看一看 。

(四)回到第一屏学生收集的信息,解释3、4条信息中小数的意义。

【设计意图:例2的教学分成三段进行。第一段继续教学两位小数,以“米”为单位改写成小数,从中体会不仅是“元”为单位的百分之几可以写成两位小数,其他百分之几的分数都可以写成两位小数。第二段教学三位小数,让学生把学习两位小数的经验迁移到三位小数上。数学学习的本质在于数学思维,第三段初步概括小数的意义,对一位、两位、三位……小数意义的具体分析后,抓住展示和交流这一时机,通过清晰直观的板书,从上往下又从左往右地引导学生进行概括、归纳、推理,最后达成了对小数意义的系统认识和理解。】

《小数的意义》教案 篇四

教学目标

(一)熟练地掌握小数乘法和除法的计算法则,进一步理解小数乘除法的意义。

(二)通过归纳整理,提高学生的概括能力。

教学重点和难点

熟练掌握小数乘除法的计算法则,提高学生计算的准确率。

教学过程设计

(一)归纳整理小数乘除法的意义

1口算下面各题,并说出各算式的意义。

15×3 15×3 15×03 15÷3

28×2 28×2 28×02 28÷2

25×5 25×5 25×05 25÷05

12×4 12×4 012×04 012÷04

2思考:

①小数乘法的意义有几种情况,是按什么划分的?分别是什么?

②小数除法的意义是什么?

讨论得出:小数乘法的意义包括两种情况,按乘数是整数还是小数划分。当乘数是整数时,表示求几个相同加数的和的简便运算;当乘数是小数时,表示求这个数的十分之几,百分之几,千分之几,……(小数除法的意义是已知两个因素的积与其中的一个因数,求另一个因数的运算。)

3比较归纳、整理:

看表思考:小数乘除法的意义与整数乘除法的意义有哪些地方相同,有哪些地方不同?

讨论完成下表:

(二)复习小数乘除法的计算法则

1小数乘法的计算法则。

(1)说出下面各题的积中各有几位小数。

23×05 214×07 275×1203 184×0026

提问:你是根据什么确定积中的小数位数的?为什么?(小数乘法中,积中小数的位数是由因数的小数位数决定的。因数中一共有几位小数,就从积的右边起数出几位,点上小数点。因为把小数乘法转化成整数乘法,因数扩大了多少倍,积也扩大多少倍,要使积不变,就要缩小多少倍。)

(2)根据4×25=100,75×52=3900,你能很快说出下面各题的积吗?

①04×25=(1);②0075×052=(0039)。

提问:

①式中的因数共有两位小数,为什么积中没有小数部分?②式中的因数共有五位小数,为什么积中只有三位小数?(因为积的小数部分末尾是零,根据小数的性质被划掉。)

(3)计算并验算:

67×75= 836×25= 125×24=

订正后回答:

067×75= 836×025= 0125×24=

小结:

小数乘法与整数乘法计算方法有哪些相同的地方,有哪些不同?

讨论得出:

相同点:把小数乘法转化成整数乘法后,按整数乘法的计算法则算出积。

不同点:小数乘法,还要看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

(4)口算:

08×4= 4×08= 005×20= 20×005=

003×9= 9×003= 19×5= 5×19=

观察上面的算式:谁的积大于被乘数?谁的积小于被乘数?(乘数大于1时,积小于被乘数;乘数大于1时,积大于被乘数。)

练习:在下题的○中填上>,<或=。

①16×12○16; ②14×0○14;

③024×5○024; ④37×21○37;

⑤0×7○0; ⑥0×28○0。

上述规律对于⑤,⑥两题为什么不灵了?应该补充什么?(上述规律应该补充“被乘数不为零时”。)

2小数除法的计算法则。

(1)计算并验算(P34:6):

189÷054= 71÷0125= 051÷022=

计算后订正,提问:

①怎样把除数是小数的除法转化为除数是整数的除法?根据什么?(把除数转化为整数。根据商不变的性质,除数扩大了几倍,被除数也扩大几倍。)

②小数除法与整数除法有什么相同点和不同点?(小数除法需要把除数转化成整数,按照整数除法的计算法则进行计算,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在后面添上0再继续除。)

(2)口算:

42÷06= 15÷5= 32÷08= 2÷4=

哪些算式的商大于被除数?哪些算式的商小于被除数?为什么?

(除数大于1时,商小于被除数;除数小于1时,商大于被除数。)

练习:在下面的○中填上>,<或=。

30÷06○30 18÷9○18 0÷02○0

36÷4○36 27÷03○27 0÷12○0

上述规律应该补充什么?(上述规律应该补充“被除数不为0时”。)

(三)综合练习

1口算:

3978×1= 36÷36= 287×0=

1×056= 78÷1= 0÷287=

“1”与“0”有什么特性?

2计算并求近似值:P35:2。

小结:怎样取积、差、和、商的近似值?(先算出积、差、和后,用“四舍五入法”取近似值;求商的近似值时,要除到需要保留的数位的下一位,然后再按“四舍五入法”省略尾数。)

3作业:P35:1,3。

课堂教学设计说明

复习小数乘除法的意义和法则,对整数和小数的乘除法进行了系统的整理和归纳,通过填表的形式,学生明确了它们的联系与区别,把新知识同旧知识联系起来,有利于学生掌握新知识,巩固旧知识。

通过练习,进一步完善了积与被乘数、商与被除数大小关系的规律,培养学生认真审题,细心计算,加强检验,提高计算的正确率和速度。

板书设计

整数乘法:

4×25=100

75×52=3900

小数乘法:

小数除法:

小数的意义教案 篇五

设计说明

《数学课程标准》中指出:数学思想蕴涵在数学知识形成、发展和应用的过程中,是数学知识和方法在更高层次上的抽象与概括,学生在积极参与教学活动的过程中,通过独立思考、合作交流,逐步感悟数学思想。针对本节课的教学内容和知识特点,我设计了以知识为明线,以数学思想为暗线的教学过程:

1.在分类中感知小数。

分类是一种重要的数学思想,学习数学的过程中经常会遇到分类问题。上课伊始,通过播放教师测量情境,让学生感知小数产生的必要性。然后我出示一组小数,让学生根据自己的认知给这些小数分类,充分调动学生的已有认知,并检测学生对小数的认知程度。

2.在数形结合中自主探究小数。

《数学课程标准》中指出:自主探究是获取数学知识的重要学习方式。因此,在教学中引导学生借助数形结合思想自主探究小数的意义,在汇报交流中逐渐明晰小数与十进分数之间的关系。这样设计教学,使学生真正成为课堂学习的主人。

3.找准起点,促进知识的迁移。

小数的意义借助分数来掌握,必须经历感悟十进分数与小数之间联系的过程。教学中要引导学生具体分析一位小数的意义,然后运用迁移的方法去理解两位、三位小数的`意义,发展学生的类比、推理能力,感悟知识间的内在联系,感受迁移在数学学习中的价值。

课前准备

教师准备多媒体课件

学生准备米尺

教学过程

⊙在分类中感知小数

1.在分类中感知小数。

师:谁能说一说你们都收集到了哪些生活中常用的小数?(让学生自由说一说)

老师也收集了一些小数,你能把这些小数分一分类吗?(学生在分类的过程中理解一位小数、两位小数……)

2.导入新课。

师:展示学生分类的情况,这节课就让我们根据同学们这种分类来探究小数的意义。(揭示课题)

设计意图:创设贴近学生生活实际的生活情境,引出学习对象,激发学生的学习兴趣;给生活中的小数分类,激活了学生的生活经验,促进学生知识的迁移。

⊙探究新知

1.了解小数的产生。

(1)引导学生动手量课桌、黑板等物体的边长。(组织学生动手测量,并记录测量结果,然后分组汇报)

(2)刚才同学们都很认真地进行了测量。如果在记录测量结果时,要求用“米”作单位,不够1米怎么办?

(学生可能感到很困惑,有的学生可能会想到用分数表示)

(3)教师小结:在测量和计算时,往往得不到整数的结果,这时常用小数来表示。因为日常生活和生产的需要产生了小数。

2.教学小数的意义。

(1)认识一位小数。

①课件出示米尺图。

把1米平均分成10份,指一指每一份所对应的位置。

②根据分数的意义,1分米=米,米也可以用0.1米表示。(板书:1分米 米 0.1米)

③启发学生:(指3分米处)把1米平均分成10份, 3份是多少分米?用分数表示是多少米?用小数表示是多少米?(引导学生说出:3分米 米 0.3米)

④(指7分米处)你们能说一说这里用整数、分数、小数分别怎么表示吗?(引导学生说出:7分米 米

0.7米)

⑤从前面的学习过程中,你发现分数与小数的联系了吗?(引导学生进行小组讨论、交流,然后指名汇报)

预设

生1:我发现分母是10的分数,可以写成一位小数的形式。

生2:我发现一位小数表示的是十分之几。

⑥教师小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。

(2)认识两位小数。

①你能猜一猜两位小数与什么样的分数有关系吗?[课件出示:把1米平均分成100份,每份长( )厘米,用分数表示是( )米,用小数表示是( )米;这样的3份是( )厘米,用分数表示是( )米,用小数表示是( )米;这样的7份是( )厘米,用分数表示是( )米,用小数表示是( )米]

②引导学生观察米尺,结合教师出示的习题进行分组讨论。(指名回答,并板书:1厘米 米 0.01米3厘米 米 0.03米 7厘米 米 0.07米)

(3)认识三位小数。

师:把1米平均分成1000份,每份长多少?