1. 主页 > 范文大全 >

《反比例函数》教学设计【优秀10篇】

作为一名无私奉献的老师,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。我们应该怎么写教学设计呢?高考家长帮小编精心为小伙伴们带来了《反比例函数》教学设计【优秀10篇】,希望能够给朋友们的写作带来一定的启发。

反比例函数教案 篇一

教学目标:

1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。

2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。

教学过程:

一、创设情境,明确问题

同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看:

人数(人)

反比例函数教案 篇二

教学目标

(1)进一步体验现实生活与反比例函数的关系。

(2)能解决确定反比例函数中常数志值的实际问题。

(3)会处理涉及不等关系的实际问题。

(4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。

难点:

如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。

教学过程:

1、引入新课

上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨

2、提出问题、解决问题

(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t

(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)

(3)明确了问题的区别,那么第二问怎样解决

根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0<t≤5,即0<240/v≤5,可以知道v≥48即至少要每天48吨。但是课本把第二问中“至少”处理成等式,使问题简单了。

3、巩固练习

例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。

(1)蓄水池的容积是多少

(2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。

(3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少

(4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空

这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。

4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论:

(1)学习了反比例函数的应用。

(2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。

(3)求“至少”“最多”值时,可根据函数的性质得到。

5、作业设计①必做题:

(1)课本第61页第2题。

(2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页。

《反比例函数》教学设计 篇三

一、知识与技能

1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解、

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念、

二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点、

2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识、

三、情感态度与价值观

1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣、

2、通过分组讨论,培养学生合作交流意识和探索精神、

教学重点:

理解和领会反比例函数的概念、

教学难点:

领悟反比例的概念、

教学过程:

一、创设情境,导入新课

活动1

问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?

(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;

(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;

(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化、

师生行为:

先让学生进行小组合作交流,再进行全班性的'问答或交流。学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式、教师组织学生讨论,提问学生,师生互动、在此活动中老师应重点关注学生:

①能否积极主动地合作交流、

②能否用语言说明两个变量间的关系、

③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象、

分析及解答:(1);(2);(3)

其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;

上面的函数关系式,都具有的形式,其中k是常数、

二、联系生活,丰富联想

活动2

下列问题中,变量间的对应关系可用这样的函数式表示?

(1)一个游泳池的容积为2000m3,注满游泳池所用的时间随注水速度u的变化而变化;

(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;

(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化、

师生行为

学生先独立思考,在进行全班交流、

教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;

(2)能否积极主动地参与小组活动;

(3)能否比较深刻地领会函数、反比例函数的概念、

分析及解答:(1);(2);(3)

概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零、

活动3

做一做:

一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm、那么变量y是变量x的函数吗?是反比例函数吗?为什么?

师生行为:

学生先进行独立思考,再进行全班交流、教师提出问题,关注学生思考、此活动中教师应重点关注:

①生能否理解反比例函数的意义,理解反比例函数的概念;

②学生能否顺利抽象反比例函数的模型;

③学生能否积极主动地合作、交流;

活动4

问题1:下列哪个等式中的y是x的反比例函数?

问题2:已知y是x的反比例函数,当x=2时,y=6

(1)写出y与x的函数关系式:

(2)求当x=4时,y的值、

师生行为:

学生独立思考,然后小组合作交流、教师巡视,查看学生完成的情况,并给予及时引导、在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念;

②学生能否积极主动地参与小组活动、

分析及解答:

1、只有xy=123是反比例函数、

2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值、

解:(1)设,因为x=2时,y=6,所以有解得k=12

三、巩固提高

活动5

1、已知y是x的反比例函数,并且当x=3时,y=?8、

(1)写出y与x之间的函数关系式、

(2)求y=2时x的值、

2、y是x的反比例函数,下表给出了x与y的一些值:

(1)写出这个反比例函数的表达式;

(2)根据函数表达式完成上表、

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”、

四、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解、在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象、反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象、

《反比例函数》教学设计 篇四

一、知识与技能

1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法

1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观

1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备

1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:

(1)复习已学过的反比例函数的图象和性质

(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程

一、创设问题情境,引入新课

复习:反比例函数图象有哪些性质?

反比例函数 y?k

x 是由两支曲线组成,

当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;

当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课

[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?

(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?

(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。而关键是充分运用反比例函数分析实际情况,建立函数模型,并且利用函数的性质解决实际问题。

师生行为:

先由学生独立思考,然后小组内合作交流,教师和学生最后合作完成此活动。

在此活动中,教师有重点关注:

①能否从实际问题中抽象出函数模型;

②能否利用函数模型解释实际问题中的现象;

③能否积极主动的阐述自己的见解。

生:我们知道圆柱的容积是底面积×深度,而现在容积一定为104m3,所以S·d=104.变形就可得到底面积S与其深度d的函数关系,即S=

所以储存室的底面积S是其深度d的反比例函数。

104 生:根据函数S= ,我们知道给出一个d的值就有唯一的S的值和它相d

对应,反过来,知道S的一个值,也可求出d的值。

题中告诉我们“公司决定把储存室的底面积5定为500m2,即S=500m2,”施工队施工时应该向下挖进多深,实际就是求当S=500m2时,d=?m.根据S=104104 ,得500=,解得d=20. dd

即施工队施工时应该向下挖进20米。

生:当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石。为了节约建设资金,公司临时改变计划,把储存室的深度改为15m,即d=15m,相应的储存室的底面积应改为多少才能满足需要;即当d=15m,S=?m2呢?

104 根据S=,把d=15代入此式子,得 d

S=104 ≈666.67. 15104. d

当储存室的探为15m时,储存室的底面积应改为666.67m2才能满足需要。 师:大家完成的很好。当我们把这个“煤气公司修建地下煤气储存室”的问题转化成反比例函数的数学模型时,后面的问题就变成了已知函数值求相应自变量的值或已知自变量的值求相应的函数值,借助于方程,问题变得迎刃而解,

三、巩固练习

1、(基础题)已知某矩形的面积为20cm2:

(1)写出其长y与宽x之间的函数表达式,并写出x的取值范围;

(2)当矩形的长为12cm时,求宽为多少?当矩形的宽为4cm,

求其长为多少?

(3)如果要求矩形的长不小于8cm,其宽至多要多少?

2、(中档题)如图,某玻璃器皿制造公司要制造一种窖积为1升(1升=1立方分米)的圆锥形漏斗。

(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?

(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?

设计意图:

让学生进一步体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,更进一步激励学生学习数学的欲望。

师生行为:

由两位学生板演,其余学生在练习本上完成,教师可巡视学生完成情况,对“学困生”要提供一定的帮助,此活动中,教师应重点关注:①学生能否顺利建立实际问题的数学模型;②学生能否积极主动地参与数学活动,体验用数学模型解决实际问题的乐趣;③学生能否注意到单位问题。

生:解:

(1)根据圆锥体的体积公式,我们可以设漏斗口的面积为Scm,,漏斗的深为dcm,则容积为1升=l立方分米=1000立方厘米。

13000 所以,S·d=1000, S= 。 3d

(2)根据题意把S=100cm2代入S=30003000中,得 100= 。d=30(cm)。 dd

所以如果漏斗口的面积为100c㎡,则漏斗的深为30cm.

3、(综合题)新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5X103m2.

(1)所需的瓷砖块数n与每块瓷砖的面积s又怎样的函数关系?

(2)为了使住宅楼的外观更加漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80cm2,灰、白、蓝瓷砖使用比例为2:2:1,则需要三种瓷砖各多少块?

四、小结

1、通过本节课的学习,你有哪些收获?

列实际问题的反比例函数解析式

(1)列实际问题中的函数关系式首先应分析清楚各变量之间应满足的分式,即实际问题中的变量之间的关系立反比例函数模型解决实际问题;

(2)在实际问题中的函数关系式时,一定要在关系式后面注明自变量的取值范围。

2、利用反比例函数解决实际问题的关键:建立反比例函数模型。

五、布置作业

P54—55.第2题、第5题

六、课时小结

本节课是用函数的观点处理实际问题,并且是蕴含着体积、面积这样的实际问题,而解决这些问题,关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么?可以是什么?逐步形成考察实际问题的能力,在解决问题时,应充分利用函数的图象,渗透数形结合的思想。

《反比例函数》教师教案 篇五

教学目标:

1、理解反比例的意义。

2、能根据反比例的意义,正确判断两种量是否成反比例。

3、培养学生的抽象概括能力和判断推理能力。

教学重点:

引导学生理解反比例的意义。

教学难点:

利用反比例的意义,正确判断两种量是否成反比例。

教学过程:

一、复习铺垫

1、成正比例的量有什么特征?

2、下表中的两种量是不是成正比例?为什么?

二、自主探究

(一)教学例1

1、出示例1,提出观察思考要求:

从表中你发现了什么?这个表同复习的表相比,有什么不同?

(1)表中的两种量是每小时加工的数量和所需的加工时间。

教师板书:每小时加工数和加工时间

(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。

教师追问:这是两种相关联的量吗?为什么?

(3)每两个相对应的数的乘积都是600.

2、这个600实际上就是什么?每小时加工数、加工时间和零件总数,怎样用式子表示它们之间的关系?

教师板书:零件总数

每小时加工数×加工时间=零件总数

3、小结

通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。

(二)教学例2

1、出示例2,根据题意,学生口述填表。

2、教师提问:

(1)表中有哪两种量?是相关联的量吗?

教师板书:每本张数和装订本数

(2)装订的本数是怎样随着每本的张数变化的?

(3)表中的两种量有什么变化规律?

(三)比较例1和例2,概括反比例的意义。

1、请你比较例1和例2,它们有什么相同点?

(1)都有两种相关联的量。

(2)都是一种量变化,另一种量也随着变化。

(3)都是两种量中相对应的两个数的积一定。

2、教师小结

像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。

3、如果用字母x和y表示两种相关联的量,用k表示它们的积一定,反比例关系可以用一个什么样的式子表示?

教师板书: xy =k(一定)

三、课堂小结

1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。

2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?

四、课堂练习

完成教材43页做一做

五、课后作业

练习七6、7、8、9题。

六、板书设计

成反比例的量 xy=k(一定)

每小时加工数×加工时间=零件总数(一定)

每本页数×装订本数=纸的总页数(一定)

《反比例函数》教师教案 篇六

教学目标:

1、通过实践活动,理解反比例的意义,并能根据反比例的意义,正确地判断两种相关联的量是否成反比例;

2、通过小组间的合作学习,培养学生的合作意识、参与意识,训练其观察能力及概括能力;

3、利用多媒体动画的演示,让学生体验到反比例的变化规律。

教学重点:感受反比例的变化,概括反比例的意义;

教学难点:正确判断两种相关联的量是否成反比例;

教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)

每次拿的支数

10

5

4

2

1

拿的次数

总支数

教学过程:

一、复习

1、什么叫做“成正比例的量”?

2、判断两种量是否成正比例关键是什么?

3、练习:课本表中的两种量是不是成正比例?为什么?

二、小组协作 概括“成反比例的量”的意义

(一)活动一

师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!

1、学生汇报观察记录单的填写结果。

2、引导观察:在填、拿的过程中,你发现了什么?

3、师:你能根据表格,写出这三个量的关系式吗?

4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。

5、揭示反比例的意义(阅读课本,明确反比例关系)

6、如果用x、y 表示两种相关联的量,用k表示积,反比例关系式怎样表示?

(二)活动二:(例3)

1、课件出示例3,指名读题,学生独立完成

2、总结归纳出正比例和反比例的相同点和不同点

三、强化练习 发展提高

1判定两个量是否成反比例,主要看它们的( )是否一定。

2全班人数一定,每组的人数和组数。

( )和( )是相关联的量。

每组的人数×组数=全班人数(一定)

所以( )和( )是成反比例的量。

3判断下面每题中的两种量是不是成反比例,并说明理由。

糖果的总数一定,每袋糖果的粒数和装的袋数。

煤的总量一定,每天的烧煤量和能够烧的天数。

生产电视机的总台数一定,每天生产的台数和所用的天数。

长方形的面积一定,它的长和宽。

4机动练习:

想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?

四、全课总结

1、你能不能结合日常生活举一些反比例的例子。

2、今天这节课,你有什么收获?还有什么遗憾?

反比例函数教案 篇七

教学目标:

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。

教学程序:

一、导入:

1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。

2 、U=IR,当U=220V时,

(1)你能用含 R的代数式 表示I吗?

(2)利用写出的关系式完成下表:

R(Ω) 20 40 60 80 100

I(A)

当R越来越大时,I怎样 变化?

当R越来越小呢?

( 3)变量I是R的函数吗?为什么?

答:① I = UR

② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。

③变量I是R的函数 。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。

二、新授:

1、反比例函数的概念

一般地,如果两个变量x, y之间的关系可以表示成 y=kx (k为常数,k≠0)的形式,那么称y是x的反比例函 数。

反比例函数的自变量x 不能为零。

2、做一做

一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗?

解:y=20x ,是反比例函数。

三、课堂练习

P133,12

四、作业:

P133,习题5.1 1、2题

《反比例函数》教师教案 篇八

教学目标

(一)教学知识点

1、从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解。

2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

(二)能力训练要求

结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。

(三)情感与价值观要求

结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用。

教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

教学难点

领会反比例函数的意义,理解反比例函数的概念。

教学方法

教师引导学生进行归纳。

教具准备

投影片两张

第一张:(记作§5.1A)

第二张:(记作§5.1B)

教学过程

Ⅰ。创设问题情境,引入新课

[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数。但是在现实生活中,并不是只有这两种类型的表达式。如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘。

反比例函数教案 篇九

教学目标

知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。

情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重点

教学难点 1) 重点:画反比例函数图象并认识图象的特点。

2)难点:画反比例函数图象。

教学关键 教师画图中要规范,为学生树立一个可以学习的模板

教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式

教学手段 教师画图,学生模仿

教具 三角板,小黑板

学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法

教学过程

(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

内 容 设计意图

一:课前检测:

1.什么叫做反比例函数;

(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)

2.反比例函数的定义中需要注意什么?

(1)k为常数,k0

(2)从y= 中可知x作为分母,所以x不能为零。

二:激发兴趣 导入新课

问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?

y=kx+b y=kx

K0 一、二、三 一、三

b0 一、三、四

K0 一、二、四 二、四

b0 二、三、四

问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?

可以

问题3:画图象的步骤有哪些呢?

(1)列表

(2)描点

(3)连线

(教学片断:

师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

生:我知道反比例函数的解析式为 且k不等于0

生:我知道反比例函数的图象是曲线。

师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里。现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

生:该研究反比例函数图象和性质了。

师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

三:探求新知

学生思考、交流、回答。

提问:你能画出 的图象吗?

学生动手画图,相互观摩。

(1) 列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

议一议

(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

(4)曲线的发展趋势如何?

曲线无限接近坐标轴但不与坐标轴相交

学生先分四人小组进行讨论,而后小组汇报

做一做

作反比例函数 的图象。

学生动手画图,相互观摩。

想一想

观察 和 的图象,它们有什么相同点和不同点?

学生小组讨论,弄清上述两个图象的异同点

相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

四:归纳与概括

反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第___、___象限,

(2) 当 k0 时,两支曲线分别位于第___、___象限。

五:课堂练习

(1)

(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;

六:形成性检测

(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________

(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )

(A) (B) (C) (D)

(3)画 和 的图象

七:反馈拓展

在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标。

八:作业布置

(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象

(2) 习题5.2.1

(3)预习下一节 反比例函数的图象与性质II

复习上节主要内容

(3分钟)

(5分钟)

运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

(12分钟)

引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质。

在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

注:(1)x取绝对值相等符号相反的数值

(2) x取值要尽可能多,而且有代表性

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

(3分钟)

此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

(5分钟)

活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

(4分钟)

培养学生归纳,语言表达能力

此中注意分类讨论思想的应用

巩固反比例函数图象性质

(2分钟)

与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

(5分钟)

这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

(4分钟)

此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

(1分钟)

巩固作反比例函数图象的步骤,预习下一节课内容

教学反思与检讨:

本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

反比例函数的图象与性质

一:画出 的图象

(1)列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

注:(1)x取绝对值相等符号相反的数值

(2)x取值要尽可能多,而且有代表性 三:练习

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

二:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第一、三象限,

(2) 当 k0 时,两支曲线分别位于第二、四象限。

反比例函数教案 篇十

一、背景分析

1.对教材的分析

本节课讲述内容为北师大版教材九年级下册第五章《反比例函数》的第二节,也这一章的重点。本节课是在理解反比例函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。

本节课前一课时是在具体情境中领会反比例函数的意义和概念。函数的性质蕴涵于概念之中,对反比例函数性质的探索是对其内在规定性的的认识,也是对函数的概念的深化。同时,本节课也是下一节课《反比例函数的应用》的基础,有了本节课的知识储备,便于学生利用函数的观点来处理问题和解释问题。

传统教材在内容和编写意图的比较:传统教材里反比例函数的内容仅有一节,新教材里反比例函数的内容增加至一章。本节课中的作函数图象的要求在新旧教材中并不一样,旧教材对画图只是一带而过,而新教材中让学生反复作反比例函数的图象,为下一步性质的探索打下良好的基础。因为在学生进行函数的列表、描点作图是活动中,就已经开始了对反比例函数性质的探索,而且通过对函数的三种表示方式的整和,逐步形成对函数概念的整体性认识。在旧教材中对反比例函数性质只是简单观察以后,由老师讲解得到,但是在新教材中注重从操作、观察、概括和交流这些数学活动中得到性质结论,从而逐步提高从函数图象中获取信息的能力。这也充分体现了重视获取知识过程体验的新课标的精神。

(1)教学目标:进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。

(2)重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。

(3)难点:探索并掌握反比例函数的主要性质。

2、对学情的分析

九年级学生在前面学习了一次函数之后,对函数有了一定的认识,虽然他们在小学已经接触了反比例,但都处于浅显的、肤浅的知识表面,这对于他们理解反比例函数的图象与性质没有多大的帮助,但由于本节课采用z+z智能教育平台进行教学,比较形象,便于学生接受。

二、教学过程

一、忆一忆

师:同学们还记得我们在学习一次函数时,是怎么作出一次函数图象的吗?一次函数的图象是什么图形?

生:作一次函数的图象要采用以下几个步骤:

(1)列表

(2)描点

(3)连线。

生乙:一次函数的图象是一条直线。

师:大家说的很好,看来大家对过去的知识掌握的很牢固,那么同学们想一下,y=4/x是什么函数?

生:反比例函数。

师:你们能作出它的图象吗?

生:可以。

点评:复习旧知识,让学生感受到新旧知识的联系,并为后面的作反比例函数的图象做好准备。

二、作图象,试比较

师:请填写电脑上的表格,并开始在坐标纸上描点,连线。

师:再按照上述方法作y=-4/x的图象。

(学生动手操作)

师:下面大家分小组讨论:对照你们所作出的两个函数图象,找出它们的相同点与不同点。

(学生讨论交流,教师参与)

师:讨论结束,下面哪个小组的同学说说你们的看法?

生1:它们的图象都是由两支曲线组成的。

生2:y=4/x的图象的两条曲线分布在一、三象限内,而y=-4/x的图象的两支曲线分布在二、四象限内。

点评:这里让学生自己上台操作,既培养了学生的动手能力,又可以激发学生学好数学的兴趣。

三、细观察,找规律

师:大家都说得很好,下面我们一起观察反比例函数y=k/x的图象,当k的发值生变化时,函数的图象发生了怎样的变化,并分小组讨论有什么规律。

(展示图象,让学生观察y=k/x的图象,按下动画按钮,在运动中观察值的变化与函数的图象变化之间的关系,并与同学们充分讨论)

师:请同学们谈一谈刚才讨论的结果。

生:我发现函数图象的变化与k的值有关:当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

师:看来大家都经过了认真的思考和讨论,对规律总结的也比较完整,下面我们一起把刚才两个环节的知识点一起总结一下。

(1)反比例函数y=k/x的图象是由两支曲线所组成的。

(2)当k>0时,两支曲线分别在一、三象限;当k<0时,两支曲线分别在二、四象限。

(3)当k>0时,在每一象限内,y随x的增大而减小,当k<0时,在每一象限内,y随x的增大而增大。

师:如果我们将反比例函数的图象绕原点旋转180后,你会发现什么现象?这说明了什么问题?

(由学生在电脑上进行操作)

生:我发现旋转后的图象与原图象完全重合了,这说明反比例函数的图象是一个中心对称图形。

师:大家做得很好。那么,如果我们在图象上任取a、b两点,经过这两点分别作轴、轴的垂线,与坐标轴围成的矩形面积分别为s1、s2,观察两个矩形面积的变化情况,并找出其中的变化规律。

题目:

(1)拖动k,使k变化,观察k不断变化过程中,矩形面积的变化情况,讨论得出结论。

(2)拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。

生:我们发现,在同一个反比例函数中,不管k值怎么变化,矩形的面积始终不变。

师:大家的观察很仔细,总结得也很正确。

点评:在这个环节中,既让学生动手操作,又让他们分组交流,这样既培养了他们的动手能力,又增强了他们的团结合作的意识。结论主要有学生来发现,体现了新课程理论的精神。

四、用规律,练一练

1、课本137页随堂练习1

生:第一幅图是y=-2/x的图象,因为在这里的k<0,双曲线应在第二、四象限。

2、下列函数中,其图象唯一、三象限的有哪几个?在其图象所在象限内,的值随的增大而增大的有哪几个?

(1)y=1/(2x)

(2)y=0.3/x

(3)y=10/x

(4)y=-7/(100x)

生:其中(1)(2)(3)的图象在一、三象限;(4)的图象在每一象限内,y随x的增大而增大。

五、想一想,谈收获

师:通过今天的学习,你有什么收获?

生甲:我今天知道了怎样画反比例函数的图象。

生乙:我今天知道了反比例函数的图象是由两支曲线所组成的。

生丙:我还懂得了:当k>0时,图象分布在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,图象分布在二、四象限,在每一个象限内,y随x的增大而增大

生丁:我还能用反比例函数的相关性质解题。

师:看来大家今天学到了不少知识,只要大家能保持这种对数学的热情和勇于挑战的精神,在数学上一定会有所收获的。

总评:本节课很好的反映了新课程的一些理念,首先,就是将数学教学与多媒体教学进行了很好的整合,尤其是采用了z+z智能教育平台进行教学,在本节课从进入课堂到结束,始终有多媒体教学的参与,如在讲解反比例函数的性质时运用多媒体展示可以给学生以直观的感受,并给学生留下深刻的印象,教师也能熟练地操作电脑,可以看出教师扎实的基本功。其次,在本节课的教学中,教师将学习的主动权交给学生,课堂始终在学生自主探索、合作交流的气氛中进行,如在得出反比例函数的性质时,就在小组内进行了广泛交流,由学生自己去探索,去发现新知识,这样可以激发学生求知的欲望,达到事半功倍的目的。同时教师也主动的参与进去,把自己也当成了教室里的一员,真正体现了新课程的理念。

教学反思:

本节课由于在课前进行了大量的准备工作,包括对教材的钻研、教学内容的设计、多媒体课件的制作、学生学情的了解,因此在教学中比较顺利,对重难点内容也有效的进行了突破,尤其是电脑的引入,极大的调动了学生的学习积极性。学生由于成了课堂的主人,所以在课堂上保持了高涨的热情,因此这堂课的效果也较好。