作为一名教师,常常要写一份优秀的教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。优秀的教案都具备一些什么特点呢?下面是高考家长帮为朋友们精心整编的平行四边形教案(最新3篇),希望能够对朋友们的写作有一些帮助。
平行四边形 篇一
《平行四边形的面积》是北师大版小学数学五年级上册第二单元的内容。下面是由小编为大家带来的关于《平行四边形面积》说课稿,希望能够帮到您!
一、说教材
平行四边形的面积的教学是在学习了几何初步知识、长方形、正方形的面积计算以及平行四边形、三角形和梯形的认识的基础上安排的,有助于学生利用“转化”的思想将平行四边形转化为长方形或正方形,进而推导出面积的计算方法。长方形面积计算公式是平行四边形面积计算公式的基础,而平行四边形面积计算公式又是后面学习三角形和梯形面积计算的依据。因此这节课的内容在整个教材体系中起到承上启下的作用。于是我在教学时,将充分运用转化迁移思想,重视学生动手操作与实践,引导学生用已学的旧知去获取新知,构建新的认知结构。
二、说教法学法
本节课,我将采用“自主探究、合作交流”的教学方式。通过课件演示和实践操作,激发学生参与学习的积极性。利用知识迁移及剪、移、拼的实际操作来分解教学难点,引导学生理解平行四边形与长方形的等积转化,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形等积转化成长方形面积。
三、说学生
学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识和经验,调动他们多种感官全面参与新知的发生发展和形成过程。
四、说教学目标及重难点
按照三个维度的要求,本节课的目标确定为三个:
1、通过学生自主探索、动手实践推导出平行四边形面积计算公式,能正确运用平行四边形的面积计算公式进行相关的计算。
2、让学生经历平行四边形面积公式的推导过程,通过操作、观察、比较等活动,初步认识转化的方法,发展学生的空间观念。
3、培养学生观察、分析、概括、推导和解决实际问题的能力。
4、使学生感受数学与生活的联系,培养学生的数学应用意识,体验数学的实用价值。
教学重点:
理解并掌握平行四边形的面积计算公式,会计算平行四边形的面积。
教学难点:
通过转化的方法理解平行四边形的面积计算公式。
教学准备:
多媒体课件;让每个学生准备一个平行四边形纸片和一把剪刀。
五、说教学设计思路
学生在以前的学习中,已经知道了长方形面积公式,掌握了平行四边形的特征,会画平行四边形的高。为了让学生更好的理解掌握平行四边形面积公式。因此,在教学中让学生经历猜想操作验证推理的过程,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,把握面积始终不变的特点,归纳出平行四边形面积转化成长方形面积,并通过运用面积公式解决日常生活中的问题,使学生感到数学源于生活,寓于生活,用于生活的思想感受到数学知识的应用价值。
六、说教学环节
我将整个教学过程划分为四步:
1、复习长方形的面积计算公式。
再现长方形面积计算公式和平行四边形的特征,温故知新,为推导平行四边形的面积公式作好铺垫。
2、用数格子的方法求平行四边形的面积使学生感受到这种方法误差大又有一定的局限性,激发寻找另一种方法。猜想平行四边形的面积可能和什么有关,让学生带着这个思考题进入探究平行四边形的面积计算的思维之中。
本环节教师呈现带有方格的平行四边形,让学生凭借独特思考,同桌交流互评的渐进过程进行充分的自主探究,再亲历和体验中初步感悟计算平行四边形的方法。这样设计,使得做到本节课的重点突破,为后面进一步学习面积公式做好铺垫。
3、动手操作,验证猜想:平行四边形面积的计算方法。
为了验证前面的猜测是否正确。学生动手操作自主探究,合作交流中感悟,探索平行四边形的面积计算方法,在这个过程中,潜移默化地将等积转化的思想渗透开来。通过转化,在旧知基础上生长,而完成知识的自我构建与生成,突破了本课的教学难点。
通过这样的教学让学生经历知识形成的过程,不仅使学生的动手能力得到提高,而且加深了学生对所学知识的理解。
4、实践运用,深化认识
数学是为生活服务的,在推导出平行四边形的面积公式之后,为了了解学生的掌握程度,检验他们能否学以致用,通过练习,使学生加深对公式的理解与应用达到熟练灵活掌握的目的,实现了学习数学的价值。让学生在运用知识解决问题的过程中,增强数学的应用意识,提高解决问题的能力。我设计下面的分层随堂练习:
(1)基本练习,检测学生直接运用公式进行计算的情况,并适时进行品德教育。
(2)深化练习,深化对推导原理的理解,加深学生对公式特征的认识。
(3)开放练习,培养学生解决问题的能力。
平行四边形 篇二
课题:平行四边形面积的计算(a)
教学内容
教科书第64~66页的内容,完成练习十六的第1~3题。
教学目的
1.使学生在理解的基础上掌握平行四边形的面积计算公式,能够正确地计算平行四边形的面积。
2.使学生通过操作和对图形的观察、比较,发展学生的空间观念,使学生初步知道转化的思考方法在研究平行四边形面积时的运用,培养学生的分析、综合、抽象、概括和解决实际问题的能力。
教具、学具准备
1.参照教科书第64页的方格纸上画着的平行四边形和长方形的插图制成演示教具。有投影设备的可制成投影片。
2.剪两个底40厘米、高30厘米的平行四边形,供教师演示用。有投影设备的也可按照上述底和高的比例制成推拉投影片。
3.每个学生准备一个平行四边形(可以用教科书第137页的图剪下来贴在厚纸上。)和一把剪刀。
教学过程
一、复习
1.出示方格纸上画的平行四边形。提问:方格纸上画的是什么图形?什么叫平行四边形?它有什么特征?
2.让学生指出平行四边形的底,再指出它的高。然后让每个学生在自己准备的平行四边形上画高。(教师巡视,注意画得是否正确)
教师:今天我们就来学习平行四边形面积的计算方法。板书课题:平行四边形面积的计算
二、新课
1.用数方格的方法计算平行四边形的面积。
(1)我们在计算长方形的面积时,曾经用数方格的方法来计算它的面积,现在我们学习平行四边形面积的计算,也先用数方格的方法数一数它的面积是多少。请打开教科书,看第154页上边的平行四边形图,每一个方格表示一平方厘米,自己数一数是多少平方厘米?
请同学们认真观察一下,平行四边形在方格上出现了不满一格的,该怎么数呢?(可以都按半格计算)然后指名说出数得的结果,并说一说是怎样数的。
(2)出示方格纸上画的长方形,要求直接计算出它的面积。然后指名说出计算结果。
(3)比较平行四边形和长方形。
提问:平行四边形的底和长方形的长怎么样?平行四边形的高和长方长的宽呢?它们的面积怎么样?
启发学生把比较的结果重复说一遍。平行四边形的底和长方形的长,平行四边形的高和长方形的宽分别相等,它们的面积也相等。
(4)小结:从上面的研究我们知道,平行四边形的面积也可以用数方格的方法求出来。但数起来比较麻烦,而且往往不能算得很精确。特别是较大的平行四边形,像一块平行四边形的菜地,就不好用数方格的方法求它的面积了。想一想,能不能像计算长方形面积那样,找出平行四边形面积的计算方法呢?
2.通过操作总结平行四边形面积的计算公式。
(1)从上面的比较中,你发现平行四边形的底、高和面积与长方形的长、宽和面积之间有什么联系?你能不能把一个平行四边形转化成一个长方形呢?想一想,该怎么做?让学生拿出准备好的平行四边形进行剪拼。(学生剪拼时,教师巡视)然后指名到前面演示。
(2)教师示范把平行四边形转化成长方形的过程。
刚才我发现有的同学们把平行四边形转化成长方形时,就把从平行四边形左边剪下的直角三角形直接放在剩下的梯形的右边,拼成长方形。在变换图形的位置时,怎样按照一定的规律做呢?现在看老师在黑板上演示。
①先沿着平行四边形的高剪下左边的直角三角形。
②左手按住剩下的梯形的右部,右手拿着剪下的直角三角形沿着底边慢慢向右移动。
③移动一段后,左手改按梯形的左部,右手再拿着直角三角形继续沿着底边慢慢向右移动,到两个斜边重合为止。
请同学们把自己剪下来的直角三角形放回原处,再沿着平行四边形的底边向右慢慢移动,直到两个斜边重合。(教师巡视指导)
(3)引导学生比较。(在黑板上剪拼成的长方形的上面放一个原来的平行四边形,便于比较)
①这个由平行四边形转化成的长方形的面积与原来的平行四边形的面积比较,有没有变化?为什么?
②这个长方形的长与平行四边形的底有什么关系?
③这个长方形的宽与平行四边形的高有什么关系?
教师归纳整理:任意一个平行四边形都可以转化成一个长方形,它的长、宽分别和原来的平行四边形的底、高相等,它的面积和原来的平行四边形的面积也相等。
(4)引导学生总结平行四边形面积的公式。
这个长方形的面积怎么求?(指名回答后,在长方形右面板书:长方形的面积=长×宽)
那么,平行四边形的面积怎么求?(指名回答后,在平行四边形右面板书:平行四边形的面积=底×高)
(5)教学用字母表示平行四边形的面积公式。
板书:s=a×h,告诉s和h的读音。
教师说明:在含有字母的式子里,字母和字母中间的乘号可以记作“·”,写成a·h,代表乘号的“·”也可以省略不写,所以平行四边形面积的计算公式可以写成s=a·h或者s=ah.
(6)看教科书第65页中相应的内容,并完成第65页中间的“填空”。
3.应用总结出的面积公式计算平行四边形的面积。
(1)看教科书第66页的例题,指名读题后,引导学生想,根据什么列式?并提醒学生注意得数保留整数。然后在练习本上列式计算。教师巡视。共同订正时,指名说出根据什么列式的。
(2)完成教科书第66页“做一做”中的第1、2题。做完后,共同订正。
(3)让学生拿出自己准备的平行四边形,量一量它的底和高是多少厘米,再求出它的面积。
三、巩固练习
做练习十六的的第1题。
四、课堂小结
这节课我们共同研究了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导出来的?
五、作业
练习十六的第2、3题。
平行四边形教案 篇三
教学目标
1.在观察、操作、推理、归纳等探索过程中,发展学生合情推理的能力,进一步培养学生数学说理的习惯与能力。
2.在理解平行四边形的简单识别方法的活动中,让学生获得成功的喜悦,体验到数学活动充满着探索和创造,感受到数学推理的严谨性。
3.培养学生独立思考的习惯。
教学重点与难点
重点:探索平行四边形的识别方法。
难点:理解平行四边形的识别方法与应用。
教学准备
方格纸、直尺、图钉、剪刀。
教学过程
一、提问。
1.平行四边形对边( ),对角( ),对角线( )。
2.( )是平行四边形。
二、探索,概括。
1.探索。
(1)按照下面的步骤,在力格纸上画一个有一组对边平行且相等的四边形。
步骤1:画一线段AB。
步骤2:平移线段AD到BC。
步骤3:连结AB、DC,得到四边形ABCD,其中AD∥BC,AD=BC。
(2)如图,沿四边形的边剪下四边形,再在一张纸上沿四边形的边画出一个四边形。把两个四边形重合放在一起,重合的点分别记为A、B、C、D。通过连结对角线确定对角线的交点O,用一枚图钉穿过点O,把其中一个四边形绕点O旋转,观察旋转180后的四边形与原来的四边形是否重合,重复旋转几次,看看是否得到同样的结果。
根据上述的`过程,能否断定这个四边形是平行四边形?
2.概括。
我们可以看到旋转后的四边形与原来的四边形重合,即C点与A点重合,B点与D点重合。这样,我们就可以得到_BAC=ACD,从而AB∥DC,又AD∥BC,根据平行四边形的定义,可知道四边形ABCD是平行四边形。由此可以得到:
一组对边平行且相等的四边形是平行四边形。
(一步一步的引导学生得出结论,然后让学生用自己的语言叙述。)
三、应用举例。
例4 如图,在平行四边形ABCD中,已知点E和点F分别在AD和BC上,且AE =CF,连结CE和AF,试说明四边形AFCE是平行四边形。
四、巩固练习。
如图,在平行四边形ABCD中,已知M和N分别是AB、CD上的中点,试说明四边形BMDN也是平行四边形。
五、拓展延伸。
在下面的格点图中,以格点为顶点,你能画出多少个平行四边形?
六、看谁做的既快又正确?
七、课堂小结。
这节课你有什么收获?学到了什么?还有什么疑问吗?
八、布置作业。
补充习题