实数,是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。下面是高考家长帮为您带来的七年级数学下册《不等式及其解集》教案设计(优秀5篇),希望能够对朋友们的写作有一点帮助。
最新七年级数学下册教案人教版例文 篇一
教学目标
1.使学生受到初步的辩证唯物主义观点的教育。
2.使学生学会并掌握“按比例分配”应用题的解答方法,掌握“比例分配”问题的特征,能熟练地计算。
教学重点和难点
把比转化成分数。
教学过程设计
(一)复习准备
2.甲数与乙数的比是4∶5。
①甲数是乙数的几分之几?
②乙数是甲数的几分之几?
③甲数是甲、乙总数的几分之几?
④乙数是甲、乙总数的几分之几?
3.出示投影图:
师:看到此图你能想到什么?
学生说,老师写在胶片上:
①女生与男生的比是3∶2。
②男生与女生的比是2∶3。
4.某生产队运来60吨化肥,平均分给5个小队。每个小队分到多少吨?
60÷5=12(吨)
这种解答的方法,在算术上叫什么方法?
刚才我们解题的方法叫平均分配的方法,在工农业生产和日常生活中应用很广泛,而且这种方法你们早已比较熟悉,也经常用它解决一些实际问题。但有些事情,用这种方法就行不通了。
如:你们单元住着18家,每月交的水电费能平均分配吗?
又如:国家搞绿化建设,能把绿化任务平均分配给各单位吗?
比如生产队的土地,也要根据国家计划,合理安排种植,不能想种什么就种什么,所有这些,都需要把一个数量按照一定的“比”进行分配,这样的分配方法叫“按比例分配”。(板书课题)
(二)学习新课
1.出示例题。
例1 第四生产队计划把400公顷地按照3∶2的比例播种粮食作物和经济作物。粮食作物和经济作物各种多少公顷?
学生读题,分析题中的条件与问题,教师把条件与问题简写出来:
然后再让学生带着三个问题去思考。
(1)两种作物一共几份?怎样求?
(3)400公顷是总数,要求的两种作物各种多少公顷?怎样计算?
分析:①用一个长方形表示全部土地。(画图)
②根据粮、经之比是3∶2,你知道什么意思?(粮3份,经2份。)
师边说边把长方形平均分成5份,其中3份标粮,其中2份标经。
观察:①从图上看,把全部土地平均分成几份?你怎么算出来的?
(板书)总份数: 3+2=5
3∶2,实质都表示倍数关系。现在这道题能够解决了。
粮食作物多少公顷?怎么算?
经济作物多少公顷?怎么算?
验算:①求总数 240+160=400
②求比 240∶160=3∶2
答:粮食作物240公顷,经济作物160公顷。
(附图)
这道题就是“按比例分配”的问题。解决这个问题的关键是:首先
多少。
师归纳:问题通过分析得到解决,又经过验算证明方法正确,从这道题可以悟出解答“按比例分配”应用题的规律为:
已知两个数的和与两个数的比,把两个数的比转化成各占几分之几,然后按“求一个数的几分之几是多少用乘法”的方法解答。
2.试一试。
抓住主要矛盾练习,运用规律解决问题。
把45棵树苗分给两个中队,使两个中队分得的树苗的比是4∶5,每个中队各得几棵树苗?
总份数是几?怎么算?一中队占几分之几?二中队占几分之几?
①总份数 4+5=9
验算:①总棵树 20+25=45(棵)
②比 20∶25=4∶5
答:一中队得20棵,二中队得25棵。
(三)巩固反馈
1.某工厂有职工1800人,男女职工人数比是5∶4,求男女职工各多少人?
2.沙子灰是灰和沙子混合而成的,它们的比是7∶3。要用280吨沙子灰,则灰和沙子各需多少吨?
3.图书馆买来160本儿童故事书,按1∶2∶3分给低、中、高年级同学阅读。低、中、高年级各分到多少本?
以上三题只列出主要算式即可。
4.学校把560棵的植树任务,按照五年级三个班人数分配给各班。一班47人,二班45人,三班48人。三个班级各植树多少棵?
分析条件、问题以后让学生讨论:
①三个班植树的总棵树是几?
②题目要求按什么比?人数比是几比几?
③三个数的和及三个数的比知道后,根据“按比例分配”的规律,怎样计算这道题?
试着让学生在本上做,老师巡视,然后把方法集中到黑板上。(找用不同方法计算的学生板演。)
5.有一块试验田,周长200米,长与宽的比是3∶2。这块试验田的面积是多少平方米?
(这道题给了长与宽的比是3∶2,指的是一个长与一个宽的比,而周长包括2个长和2个宽,因此先求出一个长宽的和,即200÷2,然后把100按3∶2去分配。)
6.看图编一道按比例分配题解答。
7.水是由氢和氧按1∶8的重量比化合而成的。5.4千克的水中含氢、氧各多少千克?(看谁用的方法多。)
方法1
8+1=9
方法2
5.4÷9=0.6(千克)
0.6×1=0.6(千克)
0.6×8=4.8(千克)
方法3
方法4
5.4÷(8+1)=0.6(千克)
0.6×8=4.8(千克)
方法5
解:设氢为x千克。
5.4-x=8x
5.4=9x
x=0.6
5.4-x
=5.4-0.6
=4.8
方法6
解:设氧为x千克。
x=(5.4-x)×8
x=43.2-8x
9x=43.2
x=4.8
5.4-x
=5.4-4.8
=0.6
以上方法4,5,6要写全过程。
(四)布置作业
(略)
课堂教学设计说明
1.通过复习,使学生认识到比与分数是有联系的。
2.讲授新课时,先讲了一个最一般的按比例分配题,练习1~3题以后出现另一种形式的按比例分配题,这里老师采用讲练结合的方法。最后让学生用多种方法解答一道题,从而让学生认识到整数、分数、比和比例这些知识的内在联系,使学生明确,当题中给出比的条件时,可以直接用比例的知识解题,也可以根据整数、分数、比和比例之间的联系,把比所表示的两个数量之间的关系用分数、整数之间的关系来表示,并解答题。但是由于分析的思路不同,解答的方法也不同。不管学生采用哪种方法解答,老师都要加以肯定,并鼓励学生采用多种方法解答。
板书设计
最新七年级数学下册教案人教版例文 篇二
教学目标:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
重点难点: 运用所学知识解决实际问题。
教学过程:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、课堂作业
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
最新七年级数学下册教案人教版例文 篇三
教学目标:
1. 使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2. 使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
教学重点:求图上距离和实际距离。
教学难点:求实际距离。
教学过程:
一旧知铺垫
1. 什么叫做比例尺?
板书:图上距离:实际距离=比例尺
2.说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000
(2)比例尺80:1
(3)0----40㎞
1. 教学例2。
(1) 出示课文例题及插图。
(2) 说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝;
② 这幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3) 你认为可以用什么方法解决问题?
① 学生尝试解决问题。
② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③ 汇报解答情况。
方程解:
解:设地铁1号线的实际长度是X厘米。
根据图上距离 :实际距离=比例尺,可以例比例式解答
10/X=1/500000
X=10×500000(问:根据什么?)
根据比例的基本性质。
X=5000000
5000000㎝=50㎞
答:略
算术解:
根据图上距离除以实际距离等于比例尺 ,得出:实际距离等于图上距离除以比例尺
10÷1/500000
=10×500000
=5000000(㎝)
5000000㎝=50㎞
答:略
2. 教学例3。
(1) 出示例题,学生了解题目要求。
(2) 讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的距离;
③ 画出操场的平面图。
(3) 小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4) 汇报,交流。
① 小组派代表说明你的方案和结果。
② 选择合适的方案,展示结果,并说明解决方案
如:选择比例尺1:1000画图。求出图上的长度
80×1/1000=0.08m
0.08m=8㎝
图上的宽=60×1/1000=0.06m
0.06m=6㎝
操场平面图:
三巩固练习
1.完成课文“”做一做”
2. 完成课文练习八第4~10题。
辅导记录:学习用比例尺解决问题后,要求学生必须会用比例的知识解答,个别学生图简便,直接用算术法,而忽略了比例尺的方法,这种方法的单位换算是最容易出错的。
补充练习:
比例尺
1、在比例尺是1∶5000000的地图上,量的甲乙两地的距离是8厘米,甲乙两地的实际距离是( )千米。
2、在一幅地图上,甲、乙两地之间的距离是3厘米,甲、乙两地的实际距离是150千米。这幅地图的比例尺是( )
3、有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是( )
4、从海口到三亚全长340千米,如果将它画在1:50000的地图上,约是( )厘米。(得数保留整厘米数)
5、一块长方形的地,长75米,宽30米,用1/1000 的比例尺把它画在图纸上,长画( ),宽画( )。
6、大新小学体育场长150米,宽80米,请用1/10000 的比例尺把它画在图纸上,并求出图纸上的体育场的面积是多少?
7、在长28厘米,宽18厘米的纸上,画学校的平面图。校园东西长520米,南北宽320米。用多大的比例尺比较合适?运动场长150米,在图上应画多长?
8、在比例尺是1:400的地图上,量得一个长方形的周长是20厘米,长与宽的比是3:2。这个长方形的实际面积是多少?
填空:
1、如果 a×3=b×5,那么 a∶b=( )∶( )。
2、1:2000的图纸上面积是24平方厘米,实际面积是( )公顷。
3、一个精密仪器零件图纸的比例尺是50:1,图上长5厘米,实际长( )厘米。
4、将2、5、8再配上一个数组成比例,这个数可以是( )。
5、如果x÷y = 712 ×2,那么x和y成( )比例;如果x:4=5:y,那么x和y成( )比例。
6、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上长应画( )厘米。
7、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。这幅地图的比例尺是( )。
8、、A的 与B的 相等,那么A∶B=( )∶( ),它们的比值是( )。
9、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
10、甲乙两个互相咬合的齿轮,它们的齿数比是7:3,甲乙齿轮的转数比是( ).
11、在一张比例尺为1∶300的图纸上量得一个房间的长是2厘米,宽1.5厘米,这个房间的实际长是( )米;如果有一条道路的长60米,画在这张图纸上应画( )厘米。
七年级数学下册教案 篇四
教学目标:
知识目标:进一步使学生理解掌握平方差公式,并通过小结使学生理解公式数学表达式与文字表达式在应用上的差异。
能力目标:进一步培养学生分析、归纳和探索能力。
情感目标:培养学生数形结合的思想。
教学重难点:公式的应用及推广。
教学过程:
一、复习提问:
1.(1)用较简单的代数式表示下图纸片的面积.
(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积。
讲评要点:
沿HD、GD裁开均可,但一定要让学生在裁开之前知道HD=BC=GD=FE=ab,
这样裁开后才能重新拼成一个矩形。
(3)比较(1)(2)的结果,你能验证平方差公式吗?
学生讨论,自己得出结果
2.(1)叙述平方差公式的数学表达式及文字表达式;
(2)试比较公式的两种表达式在应用上的差异.
说明:平方差公式的数学表达式在使用上有三个优点.(1)公式具体,易于理解;(2)公式的特征也表现得突出,易于初学的人“套用”;(3)形式简洁.但数学表达式中的。a与b有概括性及抽象性,这样也就造成对具体问题存在一个判定a、b的问题,否则容易对公式产生各种主观上的误解.
3.判断正误:
(1)(4x+3b)(4x3b)=4x23b2;(×)(2)(4x+3b)(4x3b)=16x29;(×)
二、新课:
运用平方差公式计算:
(1)102×98;(2)(y+2)(y2)(y2+4).
填空:
(1)a24=(a+2)();(2)25x2=(5x)();(3)m2n2=()();
思考题:什么样的二项式才能逆用平方差公式写成两数和与这两数的差的积?
七年级数学下册教案 篇五
教学目标:
(一)知识目标:
1、探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
2、理解运算法则及在乘法中对系数运算和指数运算的`不同规定、
(二)能力目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
(三)情感目标:理解单项式乘法运算的算理及其法则,体会乘法分配律的作用和转化的思想,发展有条理的思考及语言表达能力、
教学重点:
探索整式乘法运算法则的过程,会进行单项式与单项式相乘的运算、
教学难点:
理解运算法则及在乘法中对系数运算和指数运算的不同规定、
教学过程:
导入新课:
为支持北京申办2008年奥运会,一位画家设计了一幅长6000米、名为“奥运龙”的宣传画、
受他的启发,京京用两张同样大小的纸,精心制作了两幅画;第一幅画的画面大小与纸的大小相同,第二幅画的画面在纸的上、下方各留有x米的空白、
想一想:
(1)对于上面的画面小明得到如下的结果:
第一幅画的画面面积是x(mx)米2、
第二幅画的画面面积是(mx)(x)米2、
他的结果对吗?可以表达得更简单些吗?说说你的理由、
(2)类似地,3a2b2ab3和(xyz)y2z可以表达得更简单些吗?为什么?
(3)如何进行单项式与单项式相乘的运算?
教师应鼓励学生运用乘法交换律、结合律和同底数幂的运算性质等知识的运算法则,并要求他们说明运算的道理,鼓励学生自己总结单项式与单项式相乘的运算法则、
单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。