正比例和反比例 篇一
本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。1.抽象实际事例中的数量变化规律,形成正比例的概念。例1让学生初步感知“两种相关联的量”以及“成正比例的量”的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度“一定”是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用“时间变化,路程也随着变化”具体解释两种量的“相关联”。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。“试一试”在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0.3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出“铅笔总价和数量成正比例”的结论,并用式子总价/数量=单价(一定)作出解释。“试一试”的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历“字母表示具体的数量字母式子表示常见数量关系字母式子表示正比例关系”的过程,加强对式子y/x=k(一定)的理解。“练一练”判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页“试一试”里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从“边长×4=周长”可以得到周长与边长的比的比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从“边长×边长=面积”可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。2.用图像直观表达正比例关系。例2是按照《标准》的要求“根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值”编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照“a点表示1小时行80千米”“b点表示5小时行400千米”说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页“练一练”),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2.5小时行驶的千米数,要在横轴上找到表示2.5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。3.调动学生的积极性与数学活动经验,教学成反比例的量。例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的“用60元买笔记本”相一致,因此用数量关系式“单价×数量=总价(一定)”表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。“试一试”先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数×天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成y=k(一定),形成反比例的概念。学生认识正比例意义时的数学活动经验可以迁移到反比例意义的学习中来,教学时要给学生多提供一些独立思考和合作交流的机会。如让学生观察例3的表格、填写“试一试”的表格,发现表格里的变量,解释两个变量的“相关联”;让学生联系已有的数量关系,研究总价与数量、每天运的吨数与需要的天数的变化,通过计算发现总价总是60元,一共运水泥的吨数总是72;让学生写出单价、数量和总价,每天运的吨数、需要的天数和运水泥总数的数量关系式,说说总价一定、运水泥的总吨数一定的理由;让学生阅读教材第65页关于单价和数量成反比例的那段话,交流自己的理解和体会;让学生试着用字母x、y、k表示反比例关系……练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是12×1=12、6×2=12、4×3=12,即长×宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是6×1=6、5×2=10、4×3=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。
正比例和反比例 篇二
教科书第87-90页的内容,
教学目的
1.通过比较,使学生进一步理解正比例和反比例的意义,弄清它们的联系和区别,掌握它们的变化规律,能够正确地判断成正、反比例的关系。
2.进一步发展学生的分析、比较、抽象、概括的能力。渗透对立统一的观点。
教学过程
一、复习引入
教师:前面我们学习了正比例和反比例的意义,谁能说说正比例和反比例的意义?然后让学生判断下面每题中的两种量成不成比例,是成正比例还是成反比例。
1.单价一定,数量和总价。
2.路程一定,速度和时间。
3.正方形的边长和它的面积。
4.时间一定,工效和工作总量。
教师:我们在前两节课分别学习了成正比例的量和成反比例的量,初步学会判断两种量是不是成正比例或反比例的关系,发现有些同学判断时还不够准确。这节课我们要通过比较弄清成正比例的量和成反比例的量有什么相同点和不同点。
板书课题:正比例和反比例的比较
二、探究新知
1.正、反比例意义的对比。教学例7.
出示例7的两个表:
表1
总价(元)8164080160
数量(件)1251020
表2
单价(元)804020105
数量(件)124816
(1)学生根据教科书第19页的两个表中所给的数量,分别在课本上填空。要求学生独立完成后在小组中互相检查,电脑出示正确答案,集体校正。
在表1中: 在表2中:
相关联的量是路程和时间,路程随着时 相关联的量是速度和时间,速度随着时
间变化,速度是一定的。因此,路程和 间变化,路程是一定的。因此,速度和
时间成正比例关系 时间成反比例关系。
(2)讨论:从两张表中,你是怎样发现谁是一定的?怎样判断另外两个量成什么比例关系?学生分小组充分讨论后,选派代表发言。
(3)你发现总价、单价、数量这三个量之间有什么关系?
板书:单价×数量=总价
总价/数量=单价 总价/单价 =数量
这三个量中,当其中一个量一定时,其他两个量之间有什么比例关系呢?你们能通过小组讨论,得出结论吗?
归纳:当单价一定时(也就是总价和数量的比值一定),总价和数量成正比例关系。
当总价一定时(也就是单价和数量的乘积一定),单价和数量成反比例关系。
当数量一定时(也就是总价和单价的比值一定),总价和单价成正比例关系。
(随着学生的归纳总结,依次将结论写出。)
2.比较正比例和反比例关系。
(1)通过上面的例子,比较正比例关系和反比例关系,你能说出它们之间有什么相同点与不同点吗?
学生分小组讨论后每组汇报自己的讨论结果,教师逐步完成板书。
组织讨论,教师归纳并板书:
正比例反比例
相同点1.都有两种相关联的量。2.一种量随着另一种量变化。
不同点1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小。2.相对应的每两个数的比值(商)是一定的。1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).2.相对应的每两个数的积是一定的。
三、巩固练习
1.试一试 做教科书第89页“试一试”中的题目。判断书牍、时间和路程中,每两个量成什么比例关系,为什么?
让学生自己填,并说一说为什么。
2.做练一练的第1~4题。要求学生先独立进行判断、填空,再互相说明理由。
反馈讲评。
教师巡视,个别辅导,最后订正。
3、判断下面各题中的两种量成什么比例关系?
(1)大米总数一定,每袋大米的质量和袋数。
(2)每袋大米的质量一定,大米的袋数和大米的总数。
(3)工作总量一定,工作时间和工作效率。
(4)“少年报”的单价一定,份数和总价。
(5)被除数一定,除数和商。
(6)分子不变,分母和分数值。
(7)长方形的周长一定,它的长和高
(8)圆柱的体积一定,底面积和高
(9)总产量一定,单位面积产量和种植面积
(10)用砖铺一块地,砖的面积和用砖块数。
五、小结
教师:请同学们说说正比例和反比例关系有什么相同点和不同点
正比例和反比例 篇三
教学内容:本单元一共安排了三道例题和一个练习。先认识正比例的意义,接着认识正比例的图象,再认识反比例的意义,最后安排了一些巩固练习和综合练习。
教材分析:本单元内容是在学生已经学习了比和比例等知识的基础上进行教学的,主要让学生结合实际情境认识成正比例和反比例的量。正、反比例的知识在日常生活和工农业生产中有着广泛的应用,而且还是今后进一步学习中学数学、物理、化学等知识的重要基础,因而学好这部分知识非常重要。通过学习这部分知识,还可以帮助加深对过去学过的数量关系的认识,使学生初步会从变量的角度来认识两个量之间的关系,从而初步体会函数的思想。
教学目标:
1、使学生结合实际情境认识成正比例和反比例的量,能根据正、反比例的意义判断两种相关联的量是否成正比例和反比例。
2、使学生初步认识正比例的图象是一条直线,能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
3、使学生在认识成正比例、反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步提升思维水平。
4、使学生进一步体会数学与日常生活的密切联系,增强探索数学知识和规律的意识,养成积极主动哦参与学习活动的习惯,提高学好数学的自信心。
教学重点:认识正、反比例的意义
教学难点:根据正、反比例的意义正确判断两种相关联的量是否成正比例或反比例。
课时安排:正比例和反比例(4课时)
第 1 课时
教学内容
成正比例的量
教材第62-63页的例1和试一试,练一练和练习十三的第1-3题
课型
新授
本单元教时数: 4 本教时为第 1 教时 备课日期 月 日
教学目标
1、 使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、 2、使学生在认识成正比例的量的过程中,初步体会数量之间的相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。。
3、 使、学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的能力。
教学重点
使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
教学难点
根据正比例的意义正确判断两种相关联的量是不是成正比例。
教学准备
光盘课件
教 学 过 程 设 计
教学内容
教师活动
学生活动
二次备课
一、教学例1
1、谈话引出例1的表格
2、这两种量的数据是怎样变化的?
时间在扩大,路程也随着扩大,时间在缩小,路程也在缩小。
小结:路程和时间是两种相关联饿量,时间在变化,路程也随着变化。
3、 但是,你能发现什么呢?
如果学生发现不了,就要求学生写出几组路程与时间的比,并求出比值。
这个比值是什么呢?
谁能用一句话来概括例1中的变化与不变
4、介绍成正比例的量
指名说说,表中有哪两种量
引导学生观察,
指名说一说。
启发学生从“变化”中寻找“不变”。
学生试着回答,教师帮助完成。
学生完整的说说路程和时间成正比例的量
二、教学试一试
1、出示教材试一试
教师指导学生完成
学试着完成,并交流回答四个问题。
三、概括意义
1、引导学生观察例1和试一试,它们有什么共同点。
2、概括正比例的意义,揭示课题(板书)
3、用字母怎样表示成正比例关系的两种量呢?
y:x=k(一定)
观察,说说自己的发现。
学生完整的说一说例1和试一试成正比例关系。
四、巩固练习
1、完成练一练
2、练习十三第1题
重点让学生说出判断的理由
3、做练习十三第2题
4、 做练习十三第3题
引导学生根据计算的结果来判断。完成书上的问题
重点让学生理解:只有当两种相关联的量的比值一定时,它们才成正比例的量。
独立判断,交流时说出判断的理由。
学生先各自算一算,交流,说出思考过程。
指名判断,交流时说出思考过程,其它同学进行补充或纠正。
学生理解题意,然后在书上画一画,算一算,填在书上。
五、全课总结
学习了什么?你有什么收获?
说一说
板书
正比例的意义
两种相关联的量 =k (一定) y和x就成正比例的量
课后感受
第 2课时
教学内容
正比例的意义及其图像
教材第63页例2,随后的练一练和练习十三的第4、5题
课型
新授
本单元教时数: 4 本教时为第 2 教时 备课日期 月 日
教学目标
1、 使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
2、 使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学重点
使学生认识正比例的图象,并借助直观的图象加深对成正比例量的变化规律的认识。
教学难点
使学生能利用给出的具有正比例关系的数据在方格纸上画出相应的直线,能根据具有正比例关系的一个量的数值看图估计另一个量的数值。
教学准备
光盘课件
教 学 过 程 设 计
教学内容
教师活动
学生活动
二次备课
一、教学例2
1、先出示例1的表格
谈话:同学们,像例1中成正比例的量的数据,有时也可以用图象的形式来表示。
出示已标出纵轴、横轴以及相噶关信息的方格图。教师先示范描一两个点(边讲解边示范),你们会描点吗?
引导学生观察这些点的排布规律,并用直线连起来。
提问:(1)图中的a点表示1小时行80千米,b点表示5小时行400千米,你知道其它各点分别表示什么吗?(任意指几个点让学生回答)
(2)图中所描的点在一条直线上吗?
(3)根据图象判断一下,这辆汽车2.5小时行驶多少千米?行驶440千米需要多少小时?
学生描点。
学生按要求操作完成。
指名回答
如果学生回答有困难,可以启发先在横轴上找到表示2.5小时的点,并从这点起作纵轴的平行线,从而得到与已知图象的交点;再从交点起作横轴的平行线,从而得到与纵轴的交点;最后依据与纵轴的交点进行估计。
二、巩固练习
1、练一练
学生做好后展示学生画的图象,共同评议
问:你们画出的表示打字时间和打字个数关系的图象有什么特点?
指名回答第(3)个问题
追问:你是怎样判断打750个字用多少分钟的?估计7分钟、10。5分钟呢?打450个字、625个字各用几分钟?
2、练习十三第4题
既可以根据图象的特点说明,也可以从图象上选取几个点,求出比值来作判断。
第二题要求估计,答案出入是允许的
3、 第5题
先让学生独立完成,在组织交流,帮助学生进一步明确方法,加深认识。
学生独立完成
指名回答第(2)个问题
学生相互间说一说
学生回答,要说明理由
讨论第(4)小题后,引导学生在提出一些类似的问题并进行解答。
三、全课总结
今天学习了什么?你有了什么新的认识?你知道今后还可以根据什么来判断两种量是否成正比例的量吗?
说说,议论议论。
板书
正比例的意义及其图像
例2( 图像)
课后感受
正比例和反比例 篇四
教学内容:正比例和反比例的练习
教学目的:
1、进一步理解正比例和反比例的意义。
2、结合所学知识,正确判断正、反比例。
3、发展学生理论联系实际的能力,提高学生的应用意识。
重点难点:正确判断正、反比例。
教具学具:多媒体课件。
教学过程:
一、判断题:
1、圆的面积和圆的半径成正比例。( )
2、圆的面积和圆的半径的平方成正比例。( )
3、圆的面积和圆的周长的平方成正比例。( )
4、正方形的面积和边长成正比例。( )
5、正方形的周长和边长成正比例。( )
6、长方形的面积一定时,长和宽成反比例。( )
7、长方形的周长一定时,长和宽成反比例。( )
8、三角形的面积一定时,底和高成反比例。( )
9、梯形的面积一定时,上底和下底的和与高成反比例。( )
10、圆的周长和圆的半径成正比例。( )
二、判断下面每题中的三个量成什么比例?
(1)速度、路程和时间 (2)工作总量、工作效率和工作时间
(3)单价、总价和数量 (4)平行四边形的面积、底和高
(5)总千克数、每天吃的千克数和天数
三、下列各题中的两种量是不是成比例,成什么比例,并说明理由。
(1)买相同的电脑,购买的电脑台数与总价
(2)每捆练习本的本数相同,练习本的总本数与捆数
(3)总路程一定,已行的路程与未行的路程
(4)分数值一定,分数的分子与分母 (5)长方形的长一定,它的面积和宽
(6)长方体的体积一定,底面积和高 (7)圆的周长和直径
(8)一本书的总页数一定,看的天数与平均每天看的页数
(9)订阅《扬子晚报》,订的份数与总价
(10)图上距离一定,实际距离与比例尺
(11)小麦的出粉率一定,小麦的质量与面粉的质量
(12)六(1)班同学做操,每排站的人数与排数
四、下面题里的数量成什么关系?
你能列出式子表示数量之间的相等关系吗?
(1)小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,8天可以看完。
(2)一种螺丝钉,20个重30克。一盒这样的螺丝钉是600克,一共有400个。
教后反思:
正比例和反比例 篇五
第五单元 正比例和反比例一、教学内容本单元在常见数量关系的基础上编排,教学正比例关系和反比例关系。与过去的《大纲》教材相比,本单元加强对正比例和反比例的理解,重视对正比例关系图像的认识与简单应用,不利用正比例、反比例解答应用题。全单元编排3道例题、一个练习,教学内容分成两段。例1、例2,正比例的意义、正比例的图像;例3,反比例的意义。二、教学注意点:1.细致安排学生的首次感知。正比例概念和反比例概念都要在充分的感知活动中形成,例1和例3分别是学生首次感知正比例关系与反比例关系,教材作了很细致的安排。例1把感知过程设计成四步。
路程时间·写比、求比值、解释比值。例1呈现的表格里是一辆汽车行驶的时间和路程的数据,让学生从中选择几组相对应的路程和时间,分别写出比并求出比值,发现所有比的比值都是80,体会这个比值是汽车行驶的速度,这辆汽车的行驶速度始终不变。
·用数量关系式表示比值一定。写出的各个比的数量关系相同,可以用式子“ =速度(一定)”表示它们的共同特征。学生对“路程比时间等于速度”很熟悉,而“速度(一定)”是例1数量关系的特点,首次感知正比例关系的要点就在这里。·体会相关联的量。正比例是两个相关联量的关系,教材指出路程和时间是两种相关联的量。说它们“相关联”,是因为时间变化,路程也随着变化。·揭示正比例意义。在前三步感知活动的基础上,告诉学生:当路程和相应的时间的比值总是一定时,就说行驶的路程和时间成正比例,行驶的路程和时间叫做成正比例的量。例3首次感知反比例关系,也分四步进行。依次是:观察表格里的数据,笔记本的单价变化,购买的数量也变化,但总价始终不变;用数量关系式表示积一定;理解相关联的量;揭示反比例意义。2.变换情境,让学生反复感知。仅有例题的首次感知还不能形成正比例、反比例的概念,需要反复感知,积累充分的感性认识。p62“试一试”、练习十三第1题再次感知正比例关系,p65“试一试”、练习十三第6题再次感知反比例关系。·选择与例题不同的数量。p62“试一试”里购买铅笔的数量与总价是相关联的量,它们的比值(单价)保持不变。练习十三第1题里碾米机的工作时间与碾米数量是相关联的量,它们的比值(工作效率)保持不变。学生在感知正比例关系的同时,体会这种关系是生活中常见的。·提出问题,引导有序地思考。“试一试”和练习题分别设计四个和三个连续的问题,引导学生有条理地思考,独立、主动经历感知过程。·重温发现正比例关系的方法。几个连续问题里的学习活动依次是:找到相关联的两种量→写出几组对应数量的比并求比值→比较比值的大小,解释比值的意义→用数量关系式表达比值一定→作出成正比例的结论。这些活动与例题保持一致,重温了认识正比例关系的过程,为判断两种量成不成正比例打下了基础。3.建立正比例、反比例的概念。本单元教学要形成正比例和反比例的概念。概念是一类现象共同的本质特征的反映,形成概念要对感性认识进行抽象与概括。·提取共同特征。各个成正比例的实例中都有两个相关联的量,两种量相对应的数的比值总是一定的。各个成反比例的实例里也有两种相关联的量,它们相对应的数的积是一定的。这些分别是正比例、反比例的本质特征,建立概念,要把这些共同特征提取出来。·用字母表示关系与特征。用字母x和y表示两种相关联的量,用k表示它们的比值或者表示它们的积,用字母组成的式子表示正比例和反比例关系,是认识的一次抽象,概念在抽象中形成。4.应用概念,判断比例关系。形成概念是为了更好地认识和把握客观世界,在现实生活中应用概念识别、判断和推理。正比例和反比例是常见的数量关系,判断比例关系还能初步体验函数思想,发展数学思考。·判断具体问题里的正比例、反比例。第63页“练一练”、第65页“练一练”分别判断两种量成不成正比例或反比例,并说出理由。要根据正、反比例的意义,利用表格里的数据,按照例题和“试一试”的方法与步骤进行思考。通过判断,进一步理解正比例、反比例的意义。练习十三第2、7两题也作出类似的安排。能够在具体问题里进行判断,是本单元的基本要求。·利用反例加强概念。第66页第3题通过画图、计算和填表,理解正方形面积与边长不成正比例。第68页第8题通过看图、填表,理解长方形周长一定,长和宽不成反比例。这些都是在具体问题里作出的判断,能使学生深刻体会正比例、反比例的特征,从而加强概念。·初步进行稍抽象的判断。第70页第12题没有提供具体的数据,判断两种量是不是成正比例或反比例,是较高的要求。虽然思维比较抽象,也要按照判断正比例、反比例的一般程序,先找到相关联的量,研究两个量是不是比值一定或者积一定,然后作出结论。其中的(2),一个人的年龄与体重不能看作相关联的量,而且它们的比或乘积都没有实际意义,更谈不上比值一定或积一定,因而既不成正比例,也不成反比例。5.认识并简单应用正比例的图像。正比例图像是一条射线(中学里是一条直线),反比例图像是曲线(中学里是双曲线)。本单元只教学正比例的图像,不教学反比例的图像。正比例图像的教学要求有两点,一是联系画折线统计图的经验,在方格纸上描出表示各组对应数量的点,知道所描的点在同一条直线上。二是已知一组相对应的数量中的一个数量,在图像上估计另一个数量是多少。
正比例和反比例 篇六
教学目标
1.进一步理解正、反比例的意义,弄清它们的联系和区别,掌握它们的变化规律。
2.使学生能正确判断正、反比例。
教学重点
正、反比例的联系和区别。
教学难点
能正确判断正、反比例。
教学过程
一、复习准备
判断下面每题中两种量成正比例还是成反比例。
1.单价一定,数量和总价。
2.路程一定,速度和时间。
3.正方形的边长和它的面积。
4.时间一定,工效和工作总量。
二、新授教学
(一)出示课题
教师明确:我们已经初步学习了判断两种量是不是成正比例或反比例的关系,这节课通过比较弄清它们有什么相同点和不同点。
(二)教学例7(课件演示:正反比例的比较)
例7.观察下面的两个表,根据表分别填空。
表1
路程(千米)
5
10
25
50
100
时间(时)
1
2
5
10
20
在表1中相关联的量是( )和( ),( )随着( )变化,( )是一定的。因此,时间和路程成( )关系。
表2
速度(千米/时)
100
50
20
10
5
时间(时)1
2
5
10
20
在表2中相关联的量是( )和( ),( )随着( )变化,( )是一定的。因此,时间和速度成( )关系。
1.分组讨论、交流。
2.引导学生讨论回答
(1)从表1中,怎样知道速度是一定的?根据什么判断速度和时间成正比例?
(2)从表2中,怎样知道路程是一定的?根据什么判断速度和时间成反比例?
3.引导学生总结路程、速度、时间三个量中每两个量之间的关系。
速度×时间=路程
4.练习:判断下面两个量成什么比例。
(1)当速度一定时,路程和时间。
(2)当路程一定时,速度和时间。
(3)当时间一定时,路程和速度。
(三)比较正比例和反比例的关系。(继续演示课件:正反比例的比较)
讨论填表:正、反比例异同点
相同点:都有两种相关联的量,一种量随着另一种量变化。
不同点:正比例是变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小。相对应的每两个数的比值(商)是一定的。反比例是变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).相对应的每两个数的积是一定的。
三、课堂小结
今天我们学习了哪些知识?你还有什么问题吗?
四、巩固练习
(一)判断单价、数量和总价中一种量一定,另外两种量成什么比例。为什么?
1.单价一定,数量和总价成( ).
2.总价一定,单价和数量成( ).
3.数量一定,总价和单价成( ).
(二)从汽车每次运货吨数、运货的次数和运货的总吨数这三种量中,你能找出哪几种比例关系?
五、课后作业
一个单位食堂每天用大米的数量、用的天数和大米的总量如下表。
表1
在表1中,相关联的量是( )和( ),( )随着( )变化,( )是一定的。因此,大米的总量和用的天数成( )关系。
表2
在表2中,相关联的量是( )和( ),( )随着( )变化,( )是一定的。因此,每天用的数量和用的天数成( )关系。
六、板书设计
正比例
反比例
相同点
1.都有两种相关联的量。
2.一种量随着另一种量变化。
不同点
1.变化方向相同,一种量扩大或缩小,另一种量也扩大或缩小。
2.相对应的每两个数的比值(商)是一定的。
1.变化方向相反,一种量扩大(缩小),另一种量反而缩小(扩大).
2.相对应的每两个数的积是一定的。
探究活动
灵活判断
活动目的
1.理解正反比例的意义。
2.能根据正反比例的意义,正确判断两种量是否成比例,成什么比例。
活动过程
1.教师出示思考题目:
(1)正方形的边长和面积是否成比例?
(2)圆的面积和半径是否成比例?
2.学生分小组讨论。
3.学生分小组汇报讨论结果。
4.师生共同小结并总结规律。
正比例和反比例 篇七
第三课时:认识成反比例的量(一)教学内容:第64—65页的例3和“试一试”,“练一练”和练习十三的第6—8题。教学目标: 1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。2、使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。教学重难点:教学过程:一、教学例11、谈话引出例1的表格,让学生说一说表中列出了哪两种量。2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:单价扩大,数量反而缩小;单价缩小,数量反而扩大。小结:数量和单价是两种相关联的量,单价变化,数量也随着变化。3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。学生可能会从不同的角度去寻找规律。教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。4、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?根据学生的回答,教师板书关系式:数量×单价 = 总价(一定)5、教师对两种量之间的关系作具体说明:数量和单价是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和数量是成反比例的量。(板书:路程和时间成正比例)二、教学“试一试”1、要求学生根据表中的已知条件先把表格填写完整。2、根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。三、抽象表达正比例的意义1、引导学生观察上面的两个例子,说说它们有什么共同点。2、启发学生思考:如果用字母 和 分别表示两种相关联的量,用 表示它们的积,反比例关系可以用怎样的式子来表示?根据学生的回答,板书关系式: 四、巩固练习1、完成第65页的“练一练”。先让学生独立思考并作出判断,再要求说明判断理由。2、做练习十三第6~8题。第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。第8题(1)让学生根据左边表格中的要求收集数据,并回答问题(1)。(2)(1)让学生根据右边表格中的要求收集数据,并回答问题(2)。填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。五、全课小结这节课你学会了什么?通过这节课的学习,你还有哪些收获?
正比例和反比例 篇八
第四课时:正反比例的综合练习教学内容:练习十三第9—13题。教学目标: 1、使学生进一步认识正、反比例的意义,了解正反比例的区别和联系,更好的把握正、反比例概念的本质。2、进一步加深学生对正、反比例意义的理解,使他们能够从整体上把握各种量之间的比例关系,能根据相关条件直接判断两种量成什么比例,提高判断成正比例、反比例量的能力。重点难点: 教学过程:一、复习1、复习正反比例的意义。要求学生说出成正反比例量的关键,根据学生回答板书关系式。 2、举例说明。3、讨论正反比例的区别和联系。二、练习完成练习十三9~13题1、第9题。观察每个表中的数据,讨论表下的问题。要注意启发学生根据表数据的变化规律,写出相应的数量关系式,再进行判断。2、第10题。(1)看图填写表格。(2)求出这幅图的比例尺,再根据图像特点判断图上距离和实际距离成什么比例,也可以根据相关的计算结果作出判断。要让学生认识到:同一幅地图的比例尺一定,所以这幅图的图上距离和实际距离成正比例。(3)启发学生运用有关比例尺的知识进行解答。3、第11题。填写表格,组织学生对两个问题进行比较,进一步突出成反比例量的特点。4、第12题。引导学生说说每题中的哪两种量是变化的,这两种量中,一种量变化,另一种量也随着变化,能不能用相应的数量关系式表示这种变化的规律。5、第13题。三、小结
正比例和反比例 篇九
教学内容:练习七的第3—7题。
教学目的:通过混合练习,加深学生对正比例和反比例的意义的理解,提高判断能力。
教学过程 :
一、引入
教师:前面我们学习了正比例<www.kaoyantv.com>和反比例的意义。上节课我们又把它们进行了比较,你们会根据正比例和反比例的意义,比较熟练地判断两种相关联的量是成正比例还是成反比例吗?
二、课堂练习
1.分析、研究第3题。
让学生先说出长方形的长、宽、面积三个量中。其中一个量与另外两个量的关系,教师板书出来:长×宽=面积
= 长 =宽
提问:
“当面积一定时,长和宽成什么比例关系?”
“当长一定时,面积和宽成什么比例关系?”
“当宽一定时,面积和长成什么比例关系?”
教师:通过上面的分析,我们知道:要判断三种相关联的量在什么条件下组成哪种比例关系,我们可以先写出它们中的一种量与另外两种量的关系,再进行分析,比如,当我们写出
=宽,我们就可以根据正比例的意义进行推断,当宽一定时,面积和长成正比例关系。以后你们遇到类似的题也可以仿照这样的办法进行分析推理。
2.第4题,让学生仿照第3题的方法做。订正后,教师板书如下:
每次运货吨数×运货次数=运货的总吨数(一定) 每次运货吨数 与运货次数 =运货次数(一定) 成反比例关 系。
运货的总吨 =每次运货吨数(一定) 数与运货次 数成正比例 关系
3.第5题,让学生独立做,教师巡视,注意个别辅导。
4.第6题,先让学生自己判断,然后指名回答,第(1)小题成反比例,第(2)、(4)、(6)小题成正比例,第(3)、(5)小题不成比例。
5.第7题,学生独立解答后,选一题说说是怎样解的。
6.学有余力的学生做第8‘题。
对于乘车里程和票价不成比例学生可能不理解,教师可以这祥给学生解释:因为平均每千米里程的票不相等。所以不成比例。
正比例和反比例 篇十
教学内容:
教科书第64页例3,完成随后的练一练和练习十三第6~8两题
教学目标:
1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
教学重难点: 理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
教学准备 :实物投影
教学过程:
一、谈话导入
前面我们已经初步学习了如何判断两种相关联的量是否成正比例,并且知道正比例的图象是一条直线。今天我们将共同学习两种相关联的量可能出现的另一种比例关系——反比例。
板书课题:认识成反比例的量
二、教学例3
1、出示例3的表格,让学生说一说表中列出了哪两种量。
2、引导学生观察表中的数据,说一说这两种量的数值分别是怎样变化的。
可先让同桌相互说一说,再组织全班交流。通过交流,使学生初步感知两种量的变化情况:单价扩大,数量反而缩小;单价缩小,数量反而扩大。
小结:数量和单价是两种相关联的量,单价变化,数量也随着变化。
3、引导学生进一步观察表中的数据,找一找这两种量的变化的规律,启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的数量和单价的乘积。
4、根据上面发现的规律,进一步启发学生思考:这个乘积表示什么?上面的规律能不能用一个式子来表示?
根据学生的回答,教师板书关系式:数量×单价 = 总价(一定)
5、教师对两种量之间的关系作具体说明:数量
和单价是两种相关联的量,单价变化,数量也随着变化。当单价和对应数量的积总是一定,也就是总价一定时,单价和数量成反比例,单价和数量是成反比例的量。
(板书:数量和单价成反比例)
三、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的三个问题,并仿照例3作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、抽象表达正比例的意义
1、引导学生观察上面的两个例子,说说它们有什么共同点。
2、启发学生思考:如果用字母x 和
y 分别表示两种相关联的量,用 k表示它们的积,反比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式:xy=k(一定)
五、巩固练习
1、完成第65页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。
2、做练习十三第6~8题。
第6、7题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。让学生完整地说出判断两种量是否成反比例的思考过程。
第8题
1、让学生根据左边表格中的要求收集数据,并回答问题(1)。
2、让学生根据右边表格中的要求收集数据,并回答问题(2)。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的积一定时,它们才能成反比例。
五、课堂练习:补充习题相关练习