1. 主页 > 范文大全 >

初中数学平均数教案【优秀10篇】

无论是身处学校还是步入社会,大家都尝试过写作吧,借助写作也可以提高我们的语言组织能力。范文怎么写才能发挥它最大的作用呢?这里我整理了一些优秀的范文,希望对大家有所帮助,高考家长帮小编精心为您分享了初中数学平均数教案【优秀10篇】,希望对您有所帮助。

《平均数》教案 篇一

教学目标:

1.知道平均数的含义和求法。

2.加强学生对平均数在统计学上意义的理解。

3.运用数学思想方法解决生活中有关平均数的问题,增强数学应用意识。

教师重点和难点

理解平均数的含义,掌握求平均数的方法。

教具/学具准备:

多媒体、长方形。

一、创设情境、激趣导入

1.谈话引入:(出示幻灯教师家的书架)

师:这是老师家的书架,咱们一起来看看。现在我的书架上上层有8本书,下层有4本书,我想请同学帮忙,重新整理一下,使每层书架上的书一样多。你有什么办法?

2.感知

(1)学生思考,想象移的过程。

生:把上层书架上的8本书 ,拿2本放在下层书架上,现在每层书架上的书就一样多了。

(2)教师操作并问:现在每层都有几本书了?(6本)

(3)师:像这样把多的移给少的,解决问题的方法,我们给它起个名字叫:移多补少。

(4)师:你还有什么方法?

生:把上层书架上的书和下层书架上的书先合起来,再平均放在两层书架上,这样每层书架上的书就一样多了。

师:像这种把几个不同的数先合并起来,再平均分成这样的几份的到相同的数,解决问题的方法我们也给它起个名字叫:先合后分。

(5)师:现在每层书架上的书一样多了吗?

生:一样多了。

师:都是几本?(6本)

师:它是我们通过什么方法得到的数?(或者:谁来说一说我们可以通过什么方法来得到这个数?)

生:用的是移多补少和先合后分的方法。

师:像这样得到的数,它也有自己的名字—平均数。

师:所以6就是8和4的平均数。谁再来说说6是谁和谁的平均数?(生说)

(6)师:今天,我们就来认识一下“平均数”这个新朋友,好吗? (板书:平均数)

二、合作探究,深化理解

1、师:老师又新增添了一层书架,第三层书架上有几本书了?

生:第三层书架上有3本书了、

师:用我们刚才解决问题的方法,你能求出这三层书架上书的本数的平均数吗?

师:请拿出学具,来摆一摆,注意摆时要一一对应。

摆完把你的想法讲给你的同伴听一听。(学生活动,教师巡视。)

师:谁来说一说,你的方法。

学生汇报:

生:从8本书里拿出1个放在第二层4本书里,再从第一层拿出2本书放在第三层书里,这样他们每层就一样多了。

师:现在每层有几本书了?

生:现在每层有5本书了。

师:5就是8、4、3的什么数?

生:5就是8、4、3的平均数。

师:还有其他方法吗?

生:先把三层书合起来,在平均分成3层。

师:你能有算式表示表示出来吗?

生:(8+4+3)÷3=5(本)(师板书)

师:8+4+3表示什么?为什么要除以3?5表示什么?

(1) 找2-3人来汇报。

(2) 把这个算是各部分表示什么?同伴之间互相说一说。

2、师:下面我们来解决一个生活中的小问题。(出示统计图)

(1)师:仔细观察这幅统计图,你获得了那些数学信息?

生:小红收集了47个矿泉水瓶。小兰收集了33个矿泉水瓶。小亮收集了25个矿泉水瓶。小红收集了35个矿泉水瓶。

师:根据数学信息,你能提出一个跟我们今天学习有关的数学问题吗?

生:这一小队平均每人收集了多少个矿泉水瓶?

师:怎样求出这一小队平均每人收集了多少个矿泉水瓶?

师:你先独立思考一下,把自己的想法和同伴交流交流,再把自己的想法用算式表示出来。

学生活动,教师巡视。

组织汇报:

生:(47+33+25+35)÷4

=(80+60)÷4

=140÷4

=35(个)

答:这一小队平均每人收集了35个矿泉水瓶。

师:观察这个算式,哪部分体现了合?哪部分体现了分?哪个数是平均数?

生:47+33+25+35体现了合, ÷4体现了分, 35是平均数。

师:35是哪些数的平均数?

生:35是47、33、25、35平均数。

师:有用移多补少的方法的吗?

师:你们怎么不用这种方法呢?

生:数太大不好操作。

师:好,老师把这种方法放到了上了,我们一起来看一下吧。(放,学生体验一本一本的移比较麻烦)。

师小结:看起来,真像同学们说的一样,用“移多补少”的方法解决这个问题真是不方便。我们以后在遇到问题时,一定要根据不同问题选择合适的方法来解答。

(2)师:老师把平均数也放到了统计图中,请你用这个平均数与这四位同学实际的收集的矿泉水瓶个数比一比,你发现了什么?(看情况,让学生小组交流)

生:小红收集的个数比平均数多;小兰和小亮收集的个数比平均数少;小明收集的个数与平均数同样多。

师:它是每个人实际收集到的矿泉水瓶吗?

生:不是。

师:它只是反应了这组数据的总体情况。

三、应用知识,解决问题

师:看来同学们已经对平均数有了较深的认识,那我要出几道题考考大家。

1、判断并说明理由

学校篮球队队员的平均身高是160厘米。

(1)李强是学校篮球队队员,他身高155厘米,可能吗?(生判断。)说说你的理由。

师:说得好!为了使同学们对这一问题有更深刻的了解,我还给大家带来了一道题。

(2)学校篮球队可能有身高超过160厘米的队员吗?

师:看来,还真有超出平均身高的人。不过,既然队员中有人身高超过了平均数,那么。。。。

生:那就一定有人身高不到平均数。

师:没错。看来,平均数只反映一组数据的总体水平,并不代表其中的每一个数据。好了,探讨完身高问题,我们再来看看小马过河的问题。

2、有一匹小马要过河,可是河上没有桥,河边有个告示牌:平均水深120厘米,请注意安全!小马想:我的身高是140厘米,比平均水深要高,一定能安全过河。

师:同学们,你们说小马能安全过河吗?和你的同伴讨论讨论。

学生们判断并说明理由。

师:看来小马能否安全过河是不确定的,小马听了你们的分析,一定会谨慎从事的,谢谢同学们。

3、在一次采摘活动中,小明摘了52个苹果,小刚摘了56个苹果,小红和小兰共摘了84个苹果,他们平均每人摘了多少个苹果?(列 综合算式)

学生独立解决,集体订正。

四、小结:通过今天的学习,你有哪些新的收获?

五、师总结:同学们,刚才我们利用平均数解决了这么多的问题,走出课堂,愿大家能带上今天所学的内容,更好地认识生活中与平均数有关的各种问题。

三年级数学《平均数》教案 篇二

学习内容:

教材43页例2,练习十一第4、5题

学习目标:

1、能熟练地求平均数

2、会根据平均数简单地分析问题

3、知道平均数能较好地反映一组数据的总体情况

学习重点:

根据平均数简单地分析问题

学习难点:

比较平均数,得出新的信息

学习准备:

统计图、记录卡、小黑板

学习流程:

一、导入

什么是平均数,怎样求平均数?

二、学习交流

1、课件出示例2图片

(1)从图片上你知道了哪些信息?

(2)哪个队要高一些?

(3)怎样才能知道哪个队高一些?

点拨:观察事物不能光靠眼睛看,还要科学地算一算

2、出示欢乐队和开心队身高记录表

说一说你知道了哪些信息?

小组内算一算两个队的平均身高,交流展示自己的算法

(148+142+139+141+140)5

=_____5

=_____(厘米)

(144+146+142+145+143)5

=_____5

=_____(厘米)

3、比一比

通过计算的结果看出( )了要高一些

点拨:平均数能较好地反映一组数据的总体情况。

4、出示练习十一第4题

(1)从统计图上你知道了什么?

(2)哪种饼干第一季度月平均销售量多?多多少?

(3)计算平均数,比一比

5、猜测

(1)哪种饼干销量越来越大?

(2)分析原因。

6、从统计图中你还得到什么信息?

三、展现提升

1、展示自己的学习收获。

2、交流算法。

3、提问、补充。

四、达标测评

练习十一第5题

五、总结归纳

1、通过今天的学习,你有什么收获?

2、通过求平均数,我们还可以得到很多新的信息

《平均数》数学教案 篇三

一、教学内容:

人教版《义务教育课程标准实验教科书数学》三年级下册P42、43页《平均数》

二、教学准备:

直尺、三角板,学生按矮到高的顺序坐好。

三、教学目标与策略选择:

以往我们把《平均数》这节课当成是一节应用题的课,侧重读题、分析、计算;从新课程标准出台以后,列入统计与概率的范畴,重视平均数意义的教学,更注重学生估计意识、猜想意识和推理能力的发展。学生已有了相当丰富的统计知识,对于“平均数”这个概念已有所接触,如测试中的“平均分”等。但大部分学生还不能准确理解“平均数”的意义。为此,确定以下教学目标:

1、通过观察、比较,理解平均数不是一个具体的数(实际的数);

2、在师生、生生的交流互动中,让学生知道平均数是有一定范围的,培养学生的估计、猜想意识,并产生探究数学知识的积极情感;

3、学生能掌握求平均数的方法:

(1)移多补少;

(2)先求总数再平均分等;

4、体现总体与样本的关系。

鉴于以上的目标定位,本节课重在学生的体验、参与。在学生互动中,使学生感受够到生活中处处有数学,并会从实际生活中提出数学问题,运用不同的方法加以解决,同时在学生的合作中初步感受统计知识。为此,主要采取了以下教学策略:

1、以“情”、“趣”开路。

2、创设生动的生活情境,提供丰富的生活化材料,唤起学生已有的知识经验。

四、教学流程设计及意图:

教学流程

设计意图

一、活动导入,引出平均数的意义。

1、创设情境:比身高。

(1)第一次比较。师:今天进行男女同学比身高。先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

(2)第二次比较。师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在是男同学高还是女同学高?

(3)第三次比较。师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?怎么比呢?生:。.。.。.

(4)第四次比较。师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

师:如果不请男同学上来了,你觉得还有其它比较的办法吗?

2、同桌学生讨论。生:求出几个同学的平均数。

3、现场测量台上同学的身高。

4、学生尝试练一练,指名板书。

5、比较结果。是男同学高,还是女同学高。

6、小结:看来平均数(板书课题)还真能帮肋我们解决一些问题。

二、延伸拓展,形成统计观念。

1、感悟平均身高。师指着平均身高:这个身高是你们当中times;times;同学的身高吗?那它是什么?

2、全班的平均身高。师:现在要知道全班同学的平均身高,怎么办?

生:先把所有的身高加在一起,再除以有40人。

师:是个办法,能解决这个问题。如果想知道全校四年级同学的平均身高,有什么办法?

生:。.。.。.

3、选取样本。师:但是现在在课堂里没办法解决这个问题。有没有更好的办法呢?

(1)学生参考选取第一排或第五排。

(2)选取第一组的学生比较有代表性。

4、估计。

师:你们先估计一下,第一组5个同学的平均身高是多少?

生:。.。.。.(不会比最大的大,比最小的小)

5、学生计算。

6、进一步感悟平均数。

师:是times;times;同学的身高吗?我们可以推测全班的同学身高,全校四年级同学的身高,甚至是更大范围的四年级同学的平均身高。

7、小结方法。

师:我们来观察一下,刚才我们是怎样求平均数?

生:先求总数(板书),除以人数,等于平均身高。

三、应用提高,深化统计观念。

1、举例。师:其实生活除了求平均身高外,还有很多地方用到平均数,能举个例子吗?。.。.。.

2、你觉得有危险吗?

小朋友说:我身高140厘米,在这里游泳不会有危险。

2、猜猜看:

3根小棒,平均3根小棒,平均

每根长10厘米每根长15厘米

(1)猜测。师:如果从第一个袋子里拿一根(标上序号),第2个袋子里也拿一根,哪个袋子里拿出的长一些?

(2)举例。师:能举个例子吗?同桌商量一下。

(3)汇报。

3、变式练习。

(1)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天、第三天共印87万张,他们平均每天印多少万张?

①(39+87)divide;2=63(万张)

②(39+87)divide;3=42(万张)

(2)在龙港万科印业公司的印刷车间,第一天印39万张商标,第二天上午印22万张,下午印23万张。他们平均每天印多少万张?

①(39+22+23)divide;2=42(万张)

②(39+22+23)divide;3=28(万张)

质疑:为什么两个数要除以3?三个数相加要除以2呢?

小结:像这样的天数、人数,我们可以称为份数。(平均每天的张数、平均身高可以称为平均数)

4、读信息,了解最新动态,解决实际问题。

(1)你在这幅图上了解到哪些信息?根据这些信息,你能提出什么数学问题?

(2)计算前,你先估计一下,第二十五届到第二十八届平均每届获金牌的块数?并介绍你是怎么估计的?

(3)计算--课件验证。

(4)根据这幅图的发展趋势,你能预测一下20xx年能获多少块?

四、全课总结。

以“比身高”作为本节课学生的学习主题,通过现场简单的两人比较,四人,六人,七人的比较,使学生在观察中发现比较的量在不断的变化,结果也不断在变化,在矛盾迭起的活动中,不断寻找平衡,寻求合理的比较方法。

通过教师言语的引导,制造在大范围的情况下,求平均身高这么一个矛盾,怎么办?促使学生经历寻求“样本”的过程,致使合理的解决这个问题。

在本节课的练习设计中,突出对平均数意义的理解,体现开放性,变通性,实效性。促进学生的思维不断深入、发展。

五、教学片断实录:

片断一:

开场白:今天我们进行一场比赛--比身高。板书:男、女

师:同学们的想法都很好!但是今天先进行男女同学比身高。我先请--(一个男的,一个女的同学;男的同学比女的同学明显高一点)

师:你们说谁比较高?

生:男同学。

师再请两位同学。一位男同学,一位女同学。(男同学略高于女同学)现在谁比较高?

生:还是男同学。(男同学似乎很得意)

师:看来这么一比,大家一看就知道了。继续请上两位同学(女生明显高于男生)

此时学生大笑。

师:你们笑什么呢?

生:这个男同学这么矮?

师:你们听过一句话吗,浓缩就是--精华。更何况,你们现在正是长身体的时候,过几年后,他可能会长得比你们高呢。

师:你觉得这3个男生与这3个女生比,是男同学高还是女同学高?

生:是男同学。生:是女同学。生:一样高。

师:怎么比呢?

生:把男同学高的部分“切下来”补到矮的身上,女同学也用这种办法,再比较。(还没等这位同学说完,其它同学就大笑,一致认为这是不可能的。)

生:可以把男同学或女同学的身高加起来,再比较。

另一学生似乎心领神会:找一个男生和一个女生比较,求出相差数,再找第二、第三个男生和女生比,最后比一比相差数的办法。

。.。.。.

师:如果再请上一位女生(比平均水平稍矮一点)呢,是男同学高,还是?

生:女同学或不公平。

生:还得再叫一位男生上来。

师:如果不请男同学上来了,你觉得还有其它比较办法了吗?

同桌讨论。

生:求出男、女生的平均身高。。.。.。.

六、教学反思:

1、情境的设置不应仅仅起到“敲门砖”的作用,也即仅仅有益于调动学生的学习积极性,还应在课程的进一步开展中自始至终发挥一定的导向作用(郑毓信语)。开课这一情境的创设,并不仅仅是为了引出平均数这一概念。从第一次、第二次简单的进行比较,学生一看就明白,当出现三人比较时,学生开始犯难了,有的学生觉得男生高,有的觉得女生高,有的认为一样高等,出现意见不一,怎么办?有的学生想到了用“切”的办法(当然这种方法不近合理,但也是学生对移多补少的形象化解释)、求和比较的方法(这一方法为求平均数打下铺垫)、还有的学生受到“移多补少”方法的影响,想出了求相差数的方法等,把学生的思维不断引向深入。通过第四次身高的比较,出现不合理的因素,逐步把学生的视线引向平均数,从而学生自发解决了求平均身高,也初步掌握了求平均数的方法。

2、新课程倡导用具体的、有趣味的、富有挑战性的素材引导学生投入数学活动。在“比身高”的情境中,让学生在一次次的观察、比较中迎接挑战,这样一个活动,在平时课堂中可以信手拈来的一个情境,在学生的争论中完成数学化的过程,并不需要花费过多的时间。在这种以情、趣开路的情境中,学生学得主动。

《平均数》教案 篇四

教学目标:

1、算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。

2、体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力。

教学重点:

会求一组数据的算术平均数和加权平均数。

教学难点:

体会平均数在不同情境中的应用。

教学方法:

引导-讨论-交流。

教学手段:

多媒体

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)

在篮球比赛中,队员的身高是反映球队实力的一个重要因素,如何衡量两个球队队员的身高?怎样理解“甲队队员的身高比乙队更高”?能因为甲队队员的最高身高高于乙队队员的最高身高,就说甲队队员比乙队队员更为高大吗?

上面两支球队中,哪支球队队员的身材更为高大?哪支球队队员更为年轻?你是怎样判断的?

活动1:前后桌四人交流。

找同学回答后,给出算术平均数的定义。

一般地,对于n个数x1,x2,…,xn我们把

叫做这个n数的算术平均数,简称平均数,记为 。读作“x拔”。

活动2:请同学们结合图表,自己用计算器算出各球队的平均身高,和平均年龄,看哪一个球队的平均身高高?哪一个球队的平均年龄小?

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁 16 18 21 23 24 26 29 34

相应队员数 1 2 4 1 3 1 2 1

平均年龄=(16×1+18×2+21×4+23×1+24×3+26×1+29×2+34×1)÷(1+2+4+1+3+1+2+1)≈23。3(岁)

你能说说小明这样做的道理吗?找同学回答。

巩固练习一:

1。 某班10名学生为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童。每人捐款金额如下:(单位:元)

10,12,13。5,21,40。8,19。5,20。8,25,16,30。

这10名同学平均捐款 元。(课本P216随堂练习 1)

2。一名射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,平均每次射中 环(精确到0。1)

3。小明上学期期末语文、数学、英语三科平均分为92分,她记得语文得了88分,英语得了95分,但她把数学成绩忘记了,你能告诉她应是以下哪个分数吗?

A 93分 B 95分 C 92。5分 D 94分

例1某广告公司欲聘广告策划人员一名,对A,B,C三名候选人进行了三项素质测试。他们的各项测试成绩如下表所示:

测试项目 测试成绩

A B C

创新 72; 85; 67

综合知识 50; 74; 70

语言 88; 45; 67

(1)如果根据三项测试的平均成绩确定录用人选,那么誰将被录用?

(2)根据实际需要,公司将创新、综合知识和语言三项测试得分按4:3:1的比例确定各人的测试成绩,此时誰将被录用?

解:(1)A的平均成绩为 (分)。

B的平均成绩为 (分)。

C的平均成绩为 (分)。

因此候选人A将被录用。

(2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

思考:(1)(2)的结果不一样说明了什么?

实际问题中,一组数据里的各个数据的“重要程度”未必相同。因此,在计算这组数据的平均数时,往往给每个数据一个“权”。如例1中4,3,1分别是创新、综合知识、语言三项测试成绩的权,而称

为A的三项测试成绩的加权平均数。

巩固练习二:

1、某校规定学生的体育成绩由三部分组成:早锻炼及课外活动表现占成绩的20%,体育理论测试占30%,体育技能测试占50%。小颖的上述成绩依次是92分、80分、84分,则小颖这学期的体育成绩是多少?

变形训练:(小组交流)

1、甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲种8千克,乙种10千克,丙种3千克混要一起,则售价应定为每千克 元;

2、某班环保小组的六名同学记录了自己家10月分的用水量,结果如下:(单位:吨):17,18,20,16。5,18,18。5。如果该班有45名同学,那么根据提供的数据估计10月份全班同学各家总共用水的数量约为 。

小结:先由学生总结,教师再补充。通过本节的学习,我们掌握了:1。算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数。2。体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题。

布置书面作业:课本P216习题8。1 1、2

课外作业:(两题任选一题)

1、到校医那里收集本班同学左眼视力检查结果,计算本班同学左眼视力的平均数。

2、请设计一个利用“加权平均数”方法来求平均数的应用题,再将其“权”作适当改变,观察平均值的变化。观察“权”的变化对结果的影响。

板书设计

1、平均数

算术平均数:

对于n个数x1,x2,…xn我们把

叫做这个n数的算术平均数,简称平均数,记为 。

读作“x拔”

例1解:(1)A的平均成绩为

B的平均成绩为 。

C的平均成绩为 。

因此候选人A将被录用 (2)根据题意,3人的测试成绩如下:

A的测试成绩为 (分)

B的测试成绩为 (分)

C的测试成绩为 (分)

因此候选人B将被录用。

加权平均数:称

为A的三项测试成绩的加权平均数。

(www.kaoyantv.com)《平均数》教案 篇五

教学目标:

1.学生在具体的情境中,感受平均数是解决一些实际问题的需要,体会平均数的意义,学会计算简单数据的平均数。(结果是整数)

2.运用平均数的知识解释简单的生活现象,能解决简单的实际问题。

3.操作、交流的过程中,建立学习数学的信心,发展统计观念。

教学重点:

理解平均数的意义,学会求简单数据的平均数。

学具准备:

移动学具板 、作业纸

教具准备:

移动示范板 、 课件

教学过程:

一、放情景录像,预设认知冲突

1.谈话导入、回顾情景。

2.读懂统计图,获取相关信息

从这两幅图中你能知道哪些信息?

3.提出预设问题

这一组同学在套圈比赛中,谁获得了胜利?是男生套得准一些,还是女生套得准一些呢?

二、自主探索方法,理解平均数的意义

1.引起争议,探求公正的策略

当两组人数不相等时,怎样判断哪组套的更准一些?你们有没有公平的办法?

2.萌发求平均数的需求,得出有效途径求平均成绩

3.小组动手操作,探索求平均数的方法

那我们应该怎样求男生、女生各组的平均成绩呢?

4.全班交流,感知方法

(1)移多补少

(2)一般方法

男生:6+9+7+6=28(个) 284=7(个)

女生:10+4+7+5+4=30(个) 305=6(个)

男生组算式中的9、6、7、6和28各代表什么呢 ?

为什么女生求出的总数30除以5,而不是除以4呢?

5.理解平均数的意义

我们求出男生组平均每人套中7个 ,是不是每个男生都套中7个,女生组平均每人套中6个,是不是每个女生都套中6个呢?那7和6分别是指什么?

小结:7是男生组的平均成绩,也就是6、9、7、6这组数的平均数。6是女生组的平均成绩,也就是10、4、7、5、4这组数的平均数。

6.新课小结,揭示课题 ,体会求平均数是解决这类问题的有效方法之一

三、感受平均数与生活的联系,体会平均数的作用

平均数的用途可大了;我们的学习、生活、工作中,处处要用到平均数,你们瞧!这里是有关平均数的一些资料。

1.盐城去年全年平均气温在18摄氏度。

2.盐城市某小学三年级有10个班,平均每班人数为47人。

3.小明的语、数、外,三门考试,平均成绩为92分。

4.盐城市某小学三( 5 )班同学平均年龄为8岁。

现在我们就带着新朋友平均数,来解决我们生活中的实际问题吧!

四、巩固强化,拓展应用

1.移铅笔 (93页第1题)

目的:体会移多补少的思想,加深对平均数意义的理解。

2.三条丝带的平均长度 (94页第2题)

目的:体会一般方法的优越性,上升数学的真正特征,自主领悟平均数一定在最大值和最小值之间。

3.辨析题(第94页 第3题)

目的:加深理解平均数的意义

4.综合性训练:

目的:进一步理解平均数的意义,训练学生根据问题收集相关信息、分析数据、有根据预测的能力。

五、全课总结(略)

归纳总结 篇六

1、通过今天的分一分,算一算,同学们有什么收获?

2、现在谁来说一说四(1)班和四(2)的“平均分”是怎么回事?

板书设计:

平均数

男生 女生

6+9+7+6=28(个) 10+4+7+5+4=30(个)

28÷4=7(个) 30÷5=6(个)

平均数: 7 平均数: 6

平均数教案 篇七

教学目标:

1、知道计算一组资料的平均数时,能根据数据的情况选择不同的算法。

2、知道在计算平均数时,可能会出现小数。

3、通过小组合作,探究比较得出总数,个数变化时平均数计算的方法。

教学重点:

1、能根据数据的情况灵活选择不同的算法。

2、知道在计算平均数时,可能会出现小数。

教学难点:

总数、个数有变化时计算平均数的方法。

教学用具:

教学课件

教学过程:

一、 情景导入

1、 师:小丁丁期末考试中,语文得了96分,数学得了98分,两门功课的平均分是多少分?

2、 学生单独思考解答。

3、 学生汇报交流: (96+98)2 =1942 =97(个)

答:两门功课的平均分是97分。

4、 师:你是用什么方法来解答的?(学生回答) 板书:总数个数=平均数。

5、 师:那么如果现在我们知道了英语得分是97分,三门功课的平均分是多少分?你会怎样计算呢?

6、 学生可能会有二种解答方式。

7、 师:今天就让我们继续来学习有关平均数计算的。问题。 板书:平均数的计算

二、 探究新知

(一)新授1

1、 师:我们来看一下,四位小朋友制作了很多的动物模型。(课件演示)

2、 师:这一小队平均每人制作了几个动物模型??

3、请小组讨论交流,你会这样思考?(时间留足让学生充分思考)

4、 师:谁来愿意说一说你的想法?请学生把不同的答案板演。

5、 师:让我们来看一下,小胖这位好朋友的答案是否和你相同呢?(课件演示)

6、 师:你认为谁的方法更加适合呢?

7、 学生交流讨论。

8、 小结: 可以根据数据的情况选择不同的算法来计算平均数;当资料中相同的数据较多时采用小胖那样的算法比较简单。

9、师:对于7.5个小动物这个数据你有什么疑问吗?

10、小结: 因为平均数是一组数据的平均水平,所以在计算平均数时,人数,个数可能会出现小数。

11、试一试:用你喜欢的算式:(请说一说理由) 上海八月的一周气温情况如下表: 小丁丁平均每次得分是多少分?

A.(32+30+32+30+34+32+34)7

B.(323+302+342)7

(二)新授

1、快速列出算式: 五(1)班学生为学校做纸花 ,男同学22人共做176朵,平均每人做多少朵? 17622 = 6朵 五(1)班学生为学校做纸花 ,男同学22人共做176朵,女同学24人共做284朵,平均每人做多少朵?

(176+284)(22+24)=10朵 五(1)班学生为学校做纸花 ,男同学22人平均每人做6朵,女同学24人共做284朵,平均每人做多少朵? (226+284)(22+24)=10朵

2、学生讨论交流。

3、教师引导学生注意这里没有直接出现总数,而且得到总数先要利用平均数乘以个数得到其中一个总数,然后加上后面的总数。

4、学生小组合作,解答问题。

5、小结:做题需看清问题求的是什么平均数,找到对应的总数和个数,然后用总数个数,求出平均数。

6、试一试:国庆节黄金周参观科技馆人数的情况。

( 46781 4 + 83615)(4 + 3 ) =(187124 + 83615)7 =2707397 =38677(人)

答:在国庆黄金周期间平均每天有38677人参观科技馆。

(三)小结

根据数据的情况,灵活选择不同的计算方法。要看清题目中给出条件中隐含的意义,不能光从数字上来理解。

《求平均数》教案 篇八

教学目标

1、掌握用计算器求平均数、标准差与方差的方法。

2、会用计算器求平均数、标准差与方差。

教学建议

重点、难点分析

1、本节内容的重点是用计算器求平均数、标准差与方差,难点是准确操作计算器。

2、计算器上的标准差用 表示,和教科书中用S表示不一样,但意义是一样的。而计算器上的S和我们教科书上的标准差S意义不一样。在计算器上S和 是并排在一起的,按同一键,都是统计计算用的。因S在前, 在后,这样要想显示出标准差 ,就需要发挥该键的统计功能中第二功能,于是就得先按 键,再按 键。

教学设计示例1

素质教育目标

(一)知识教学点

使学生会用计算器求平均数、标准差与方差。

(二)能力训练点

培养学生正确使用计算器的能力。

(三)德育渗透点

培养学生认真、耐心、细致的学习态度和学习习惯。

(四)养育渗透点

通过本节课的教学,渗透了用高科技产品求方差值的简单美,激发学生的学习兴趣,丰富了学生具有数学美的底蕴。

重点难点疑点及解决办法

1.教学重点:用计算器进行统计计算的步骤。

2.教学难点:正确输入数据。

3.教学疑点:学生容易把计算器上的键S主认为是书上的标准差S,教科书中的符号S与CZ1206计算器上的符号S的意义不同,而与计算器上的符号 相同。

4.解决办法:首先使计算器进入统计计算状态,再将一些数据输入,按键得出所要求的统计量。

教学步骤

(一)明确目标

请同学们回想一下,我们已学过用科学计算器进行过哪些运算?(求数的方根、求角的

三角函数值等),那么用计算器和用查表进行这些运算在运算速度、准确性等方面有什么不

同,(计算器运算速度快、准确性高,查表慢,且准确性低).这节课我们将要学习用计算器进行统计运算。它会使我们更能充分体会到用计算器进行运算的优越性。

这样开门见山的引入课题,能迅速将学生的注意力集中起来,进入新课的学习。

(二)整体感知

进行统计运算,是科学计算器的重要功能之一。一般的科学计算器,都含有统计计算功

能,教科书以用CZ1206计算器进行统计计算为例说明计算方法。用CZ1206计算器进行统计计算,一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量。这些统计量除了平均数 、标准差 外,还有数据个数n,各数据的。和 ,各数据的平方和 .衡量一组数据的波动大小的另一个量S.计算器上的键S,并不表示教科书上的标准差S.

(三)教学过程

教师首先讲清解题的三个步骤,第一步建立统计运算状态。方法:在打开计算器后,先按键2ndF、STAT,便使计算器进入计计算状态。第二步输入数据,其过程一定要用表格显示输入时,每次按数据后再按键DATA.表示已将这个数据输入计算器。这时显示的数,是已输入的数据的累计个数,表中所有数据输入后显示的数为8,表明所有数据的个数(样本容量)为8,如果有重复出现的数据,如有7个数据是3,那么输入时可按37(前面是输入的数据,后面是输人数据的个数).第三步按一下有关的键,即可直接得出计算结果。

在教师讲情操作要领的基础上,(把学生分成两组)让学生自己操作,用计算器求14.3节例1中两组数据的平均数、标准差与方差。

在学生操作过程中,教师要指导学生每输入一个数据,就检查一下计算器上的显示是否

与教科书的表格一致,如发现刚输入的数据有误,可按键DEL将它清除,然后继续往下输

入。

教师还要指出教科书上的符号S与CZ1206型计算器上的符号S的意义不同,而与该计

算器上的符号 相同,在CZ1206型计算器键盘上,用 表示一组数据的标准差。由于这个计算器上未单设方差计算键,我们可以选按键 ,然后将它平方,即按键 = ,就得到方差值 .

让学生把表5、表6与前面的笔算结果相比较,结论是一致的。引导学生通过比较计算器与笔算两种算法,总结出计算器有哪些优越性;(省时,省力,计算简便。)

这样做的目的,是使学生亲自动手实践。参与教学过程,不仅便于学生掌握用计算器进

行统计运算的步骤和要领,而且能使学生充分认识到计算器的优越性,更有利于科学计算器

在中学的普及使用。

课堂练习:教材P177中1、2.

(四)总结、扩展

知识小结:

通过本节课的学习,我们学会了用科学计算器进行统计运算。在运算中,要注意操作方

法与步骤,由于数据输入的过程较长,操作时务必仔细,避免出错,在用计算器进行统计计算的前提下,可通过比较两组数据的标准差来比较它们的波动大小,而不必再转到相应方差的比较。

方法小结:用CZ1206型计算器进行统计运算。一般分成三步:建立统计运算状态,输入数据,按键得出所要求的统计量。

布置作业

教材P179中A组

板书设计

随堂练习

用计算器计算下列各组数据的平均数和方差、标准差

1.60,40,30,45,70,58

2.9,8,7,6,9,7,8

教学设计示例2

一、教学目的

1.使学生了解计算器上有关统计计算的符号。

2.使学生会用计算器求一组数据的平均数、标准差与方差。

3.使学生体会到用计算器统计的省时、省力的优越性。

二、教学重点、难点

重点:掌握用计算器计算平均数、方差的方法。

难点:计算器上符号的准确识读与应用。

三、教学过程

复习提问

1.我们学过哪些计算一组数据的平均数的方法?

2.我们学过哪些计算一组数据的方差与标准差的方法?

引入新课

随着科学的进步,一些先进的计算工具逐步进入千家万户,我们可以用这些计算工具来进行计算。本课我们学习用计算器计算一组数据的平均数与方差的方法。

新课

让学生阅读并在教师指导下计算教材例中两组数据的平均数、标准差与方差。同时,通过应用计算器,了解 的作用。

接下来让学生作如下练习:

填空题:

2.计算器中,STAT是____的意思,DATA是____的意思。

3.计算器键盘上,符号与书中符号____意义相同,表示一组数据的____.

4.在CZ1206型计算器上设有标准差运算键,而未设____运算键,一般要通过将标准差____得到____.

选择题:

1.通过使用计算器比较两组数据的波动大小,只需通过比较它们的____即可 [ ]

A.标准差 B.方差

C.平均数 D.中位数

2.如果有重复出现的数据,比如有10个数据是11,那么输入时可按 [ ]

3.用计算器计算样本91,92,90,89,88的标准差为 [ ]

A.0 B.1 C.约1.414 D.2

4.用计算器计算7,8,8,6,5,7,5,4,7,6的平均数、方差分别为 [ ]

A.6.3,1.27 B.1.61,6.3

C.6.3,1.61 D.1.27,1.61

教师可先用投影片(或小黑板或示意图纸)写好操作效果图和学生的计算结果进行对比。

接下来师生共同继续作课本上练习

小结

1.熟悉计算器上各键的功能。

2.学会算(用计算器)平均数、标准差、方差。

四、教学注意问题

1.本课教学内容关键是动手,要让学生动手作,为帮助学生中动手能力差者,要提倡互相帮助。

2.学生做作业时可提示他们可核对以前的题目的准确性。

《平均数》 教案 篇九

一、教学过程

(1)谈话导入

师:统计表的相关知识你了解多少?

预设

生1:把收集到的数据进行整理后制成表格,用来分析情况、反映问题,这种表格叫作统计表。

生2:统计表一般包括名称、项目、数量、单位等基本信息。

生3:统计表也分为单式统计表和复式统计表。

生4:制作步骤:一是收集整理数据;二是设计表格;三是填写数据。

师:我们在以前的学习中都接触过哪些统计图?(条形统计图、折线统计图、扇形统计图)

这些统计图的特点同学们还记得吗?这节课我们就来共同复习一下条形统计图的相关知识。(板书课题:条形统计图和平均数)

二、回顾与整理

1、条形统计图的特点。

提问:请同学们回忆一下,我们以前学过的条形统计图有哪些特点?

(学生小组讨论后进行汇报)

教师根据学生的汇报情况进行小结并板书

条形统计图的特点:能够清楚地看出数量的多少。

2、条形统计图的分类。

提问:条形统计图可以分为几类?

在学生充分讨论的基础上指名回答。

预设

生1:条形统计图按照形式来分,可以分为横向条形统计图和纵向条形统计图。

生2:条形统计图按照实际需要可以绘制成单式条形统计图和复式条形统计图,前者只表示1个项目的`数据,后者可以同时表示多个项目的数据。

3、条形统计图的绘制方法。

(1)提问:同学们在制作条形统计图时应注意些什么?

(2)学生充分讨论后指名回答。

预设

生1:注意直条的宽窄应一致。

生2:要注意单位长度。

生3:还要注意美观。

生4:应先在格子图上画出纵轴和横轴,并分别标上名称。

生5:还应在横轴上确定直条的间隔,在纵轴上确定每格代表的数量。

生6:如果是复式条形统计图,不同类别要用不同的颜色或形式的直条加以区分,便于比较。

生7:还要写统计图的名称、日期、单位等。

师:下面就请同学们根据绘制条形统计图的注意事项,结合下面提供的数据信息绘制一幅条形统计图。(学生以小组为单位在方格纸上尝试完成条形统计图,教师巡视指导)

(3)课件出示数据信息:希望小学和光明小学六年级各班人数统计表。

(4)学生绘制出条形统计图后在全班展示,并说出自己的绘制方法。

(5)教师根据学生的汇报总结绘制条形统计图的方法:

①根据纸张的大小,画出两条互相垂直的射线,作为纵轴和横轴。

②在横轴上适当分配直条的位置,确定直条的宽度和间隔。

③在纵轴上确定单位长度,并标出数量和计量单位。

④用不同的图例区分两组数据。

⑤根据数据的大小,画出长短不同的直条,并标上统计图的名称、制图日期和图例。

新知探究 篇十

1、课件出示例3情景图,解说图意。

2、课件出示男生套圈成绩统计图。提问:谁套得最准?同样方法出示女生套圈成绩统计图并提问。

3、同时出示两组统计图。

提问:这是男女生的比赛成绩统计图,男生和女谁套得准一些呢?

【设计意图:先单个出示统计图是为了巩固旧知识,突然同时出现两组统计图并抛出问题是将学生的思维拉回,引起他们对新知识的重视和思考】

4、引导学生展开讨论,并对学生提出的方法进行归纳,质疑。直到学生说出“求男女生平均每人套中的个数”为止,这其中老师可以用前面讲到的“平均分”概念进行引导。

5、适时提问:如何求出男生和女生平均每人套中的个数呢?

【设计意图:学生通过自由讨论会发现自己的方法是否正确科学。“平均分”的概念会给学生很好的启发。】

6、学生尝试在统计图中通过移动长方块来达到大家都一样的结果。教师巡视引导,并发现方法得当的学生。

7、请学生发言,畅谈自己的方法及结果。教师根据学生的发言板书。

【设计意图:这一活动既让学生动了手也动了脑,再加上老师的适时引导,他们会通过移动方块和计算找到最恰当和最简便的方法来找到“平均数”,新知学习也就水到渠成了。】

8、师总结:可以通过“移多补少”法和计算法得到“平均数”。引入“平均数”概念,并告知学生平均数能较好地反映出一组数据的总体情况,并可对多组数据进行综合比较。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。