1. 主页 > 范文大全 >

倒数的认识教案(精选6篇)

作为一位不辞辛劳的人民教师,常常要根据教学需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。优秀的教学设计都具备一些什么特点呢?高考家长帮小编精心为小伙伴们分享了倒数的认识教案(精选6篇),希望能够帮助到您。

六年级数学《倒数的认识》优秀教学设计 篇一

教学目标:

1、使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

2、培养学生观察、归纳、推理和概括的能力。

教学过程

一、创设活动情景,引入概念

出示例1的一组算式,开展小组活动:算一算,找一找,这组算式有什么特点?

小组汇报交流。(通过计算,发现每组算式的乘积都是1。通过观察发现相乘的两个分数的分子和分母位置是颠倒的……)

师:同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做“倒数”。

让学生读一读:“倒数”。

出示倒数的意义:乘积是1的两个数互为倒数。

二、探究讨论,深入理解

让学生说说对倒数意义的理解。

提问:“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。)

判断下面的句子错在哪里?应该怎样叙述。

因为3/4×4/3=1,所以3/4是倒数,4/3也是倒数。

三、运用概念,探讨方法

出示例2,找一找哪两个数互为倒数?

汇报找的结果,并说说怎样找的?

1、 看两个分数的乘积是不是1;

2、 看两个分数的分子与分母是否分别颠倒了位置。

讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)

通过具体实例总结归纳找倒数的方法。

(1)找分数的倒数:交换分子与分母的位置。

例:

(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。

例:

四、出示特例,深入理解

看一看,例2中的哪些数据没有找到倒数?(1,0)

提问:1和0有没有倒数?如果有,是多少?

小组讨论、汇报。

1、关于1的倒数。

因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

也可以这样推导:

1的倒数是1。

2、关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

也可以这样推导:

分母不能为0,所以0没有倒数。

五、巩固练习

1、完成“做一做”。先独立做,再全班交流。

2、练习六第3题。

用多媒体或投影逐题出示,学生判断,并说明理由。

3、同桌进行互说倒数活动(练习六第2题)。

六、总结

今天学习了什么?

什么叫倒数?怎样找出一个数的倒数?

《倒数的认识》教学设计 篇二

教学重点:认识倒数并掌握求倒数的方法

教学难点:小数与整数求倒数的方法

教学过程:

一、基本训练

口算:

上面各式有什么特点?

还有哪两个数的乘积是1?请你任意举出乘积是1的两个数。

(板书:乘积是1,两个数)

二、引入新课

刚才我们所举出的乘积是1的两个数之间有一种特殊的关系。

(板书:倒数)

三、新课教学

1、乘积是1的两个数存在着怎样的倒数关系呢?

请看:,那么我们就说是的倒数,反过来(引导学生说)

是的倒数,也就是说和互为倒数。

和存在怎样的倒数关系呢?2和呢?

2.深化理解

提问:①什么是互为倒数?

怎样理解这句话?(举例说明)

(的倒数是,的倒数是,。.。.。.不能说是倒数,要说它是谁的倒数。)

②0有倒数吗?为什么?1有倒数吗?什么?(0虽然可以看作几分之0,如,。.。.。.但是把分子、分母调换位置,分母为0,不成立,所以0没有倒数,另外0和任何数相乘却为0。1可以写作,1与相乘还是1,符合倒数的意义,所以1的倒数是1)。

3.求一个数的倒数

教师设疑:怎样的两个数互为倒数呢?请同学们试着写一写。

①出示例题

例:写出、的倒数

学生试做讨论后,教师将过程板书如下:

所以的倒数是,的倒数是。

(能不能写成,为什么?)

总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

②深化

你会求小数的倒数吗?(学生试做)

倒数的认识教学设计 篇三

教学内容

新课标六年级上册课本P28页的例1做一做,第29页的练习六。

教学目标:

1. 通过观察、比较、概括、抽象,从本质上理解倒数的意义,并掌握求倒数的方法。

2. 培养学生的数学思维,并能比较熟练地写出一个数的倒数。

教学重点:

倒数的意义与求法。

教学难点:

从本质上理解倒数的意义。

一、 创境导课、激发兴趣。

师:同学们,我们在学习新课之前,来做个文字颠倒游戏,比如老师说:“人小”,大家可以说“小人”,你们想玩吗?

生:(大声喊道)想!

师:学科

生:科学

师:人人为我,

生:我为人人。

师:上海自来水,

生:水来自海上 ??

师:同学们,刚才的文字颠倒游戏好玩不?

生:好玩。

这是语文方面的倒数现象,数学方面把一个数倒一下会有什么现象,你们想知道吗?好,这节课我们一起来学习倒数的认识(板书)。

一、 探索新知

1.师:(课件出示)同学们请看大屏幕,谁能准确的说出结果。(学生回答)

师:同学们计算的真准确,那同学们请观察算式,你有什么发现?

(先独立思考,然后小组讨论交流)

2.找学生汇报。

生:乘积都是1.

师:其他同学还有没有其他意见。

生:我发现分子、分母位置是颠倒的。

师:在数学中我们把乘积是1的两个数互为倒数。(板书)

师:例如 倒数的认识的教学设计 和 倒数的认识的教学设计 互为倒数, 倒数的认识的教学设计 的倒数是 倒数的认识的教学设计 , 倒数的认识的教学设计 的倒数是 倒数的认识的教学设计 。

师:同学们一起读一下。(学生齐读)

师:那谁来用刚才的。方法来说一说第二道题。(学生回答)

师:5 × 倒数的认识的教学设计 那这个算数谁来说说?(学生回答)

师:通过刚才的学习,想一想,互为倒数的两个数有什么特点?

生回答,教师总结(课件出示)

二、 深入讨论

(课件出示)同学们请看,下面那两个互为倒数?

学生回答。

师:(课件出示)同学们讨论一下:1的倒数是多少?0有没有倒数,为什么?(同学们互相讨论一下)

学生汇报讨论结果。

师:通过刚才的讨论以及前面学习的,说一说怎样求一个数的倒数?

找学生回答,教师总结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。(同学齐读)

师:同学们刚才学习的你们会了吗?

生:学会了。

三、巩固练习

师:那老师来考考你,同学们请看下面的题(课件出示)。

老师找学生回答。

四、 课堂小结

1.这节课你学到了什么?

2什么是倒数?怎样求一个数的倒数?(课件展示)

五、 课后作业

数学书29页练习六1、2、3题

六.板书设计

倒数的认识

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

倒数的认识教案 篇四

教材分析:

这部分内容是在学历了分数乘法的基础上教学的,主要为后面学习分数除法做准备,因为一个数除以分数的计算方法,归结为乘这个数的倒数。这部分内容通过两个例题,主要教学倒数的意义和求倒数的方法。

设计理念:

本课强调从学生的学习兴趣,生活经验和认知水平出发,通过体验、实践、参与、交流和合作方式,让学生在合作学习的过程中,学会交流,相互评价,亲历知识的建构过程,培养学生的数学应用意识和激发学习热情,培养学生观察、归纳、推理和概括的能力。

教学目标:

认知目标:使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

能力目标:培养学生观察、归纳、猜想、推理和概括的能力。

情感目标:提供适当的问题情境,激发学生的学习兴趣和学习热情。让学生体验探索中成功的快乐,培养学生的创新意识和科学精神。

教学重点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学难点:

使学生通过探究活动,认识倒数的意义,掌握找倒数的方法。

教学过程:

一、 创设活动情景,引入概念

师:我们刚刚学习了分数的乘法,老师想考考大家掌握的怎么样,能不能经受住老师的考验?

生(众):能!

师:好!(出示投影)请把下面的几个题目算一算,同位相互交换一下答案。

题目:3/8x8/3 7/15x15/7 5x1/5 1/12x12

生:进行计算。(完成后小组进行交流,学生汇报其发现的结论)

(通过计算,学生可能发现每组算式的乘积都是1,通过观察发现相乘的两个分数的分子和分母位置是颠倒的)

师:同学们发现了每组算式的两个分数的分子与分母正好颠倒了位置,所以我们把这样的两个分数叫做倒数。

出示倒数的意义:乘积是1的两个数互为倒数。

二、 探索研究,深入理解

师:同学们能不能说说你对倒数的意义的理解?

提示:“互为”是什么意思?

生:指的是倒数表示两个数之间的关系,这两个数缺一不可,互相依存,单独的一个数不能叫倒数。

师:回答的很好,下面同学们来判断一下我说的话有没有错误:因为3/4x4/3=1,所以3/4是倒数,4/3也是倒数。

生:(争先恐后地)不对!

师:那我该怎么说呢?

生:3/4和4/3互为倒数。

师:还有其他的说法吗?

生:3/4是4/3的倒数,4/3是3/4的倒数。

师:好,大家说的都不错,那么我给你一个数你能找出它的倒数吗?

生:能!

师:好!我我来考考大家!

三、 运用概念,探讨方法

师:(投影,出示例2)

3/5 6 7/2 5/3 1/6 1 2/7 0

找一找,下面的哪两个数互为倒数?

(小组探讨交流,并说说是怎样找的?汇报交流结果。)

生:有两种方法来找一个数的倒数:

1、看看两个分数的乘积是不是1;

2、看两个分数的分子与分母是否分别颠倒了位置。

师:(征求意见)大家同意他的说法吗?

生:同意!

师:大家认为哪一种方法更快呢?

生:第二种。

师:好,那咱们就用第二种来求一个数的倒数。(板演方法,强化学生的理解。)

四、 出示特例,深入理解

师:同学们再观察一下刚才我们做的题目,还有没有没找到倒数的数据?

生:有!1和0。

师:(提问)那1和0有没有倒数呢?如果有,是多少?

小组讨论、汇报。

1、 关于1的倒数。

因为1x1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。

2、 关于0的倒数。

因为0与任何数相乘都不等于1,所以0没有倒数。

五、 巩固练习

(用多媒体投影出示下列各题,学生先做,再全班交流)

1、 写出下列各数的倒数。

4/11 16/9 35 7/8 4/15

2、 下面说法对不对?为什么?

(1)7/12与12/7的乘积为1,所以7/12与12/7互为倒数。

(2)1/2x4/3x3/2=1,所以1/2、4/3、3/2互为倒数。

(3)0的倒数还是0。

(4)一个数的倒数一定比这个数校

六、归纳小结,交流共享

师:本节课你学到了什么,你有什么体会?

生:我认识了什么叫倒数,还学会了怎样求倒数。

七、布置作业:练习7第7题。

倒数的认识教学设计 篇五

教学内容:

人教版六年制小学数学课本第十一册《倒数的认识》。

教学目标:

1、智力目标:使学生理解倒数的意义,掌握求倒数的方法,能正确的求出一个数的倒数。

2、非智力目标:培养学生举例、观察、比较、抽象概括能力;通过自主学习获得成功的体验,提高学习数学的兴趣。

教学想法:

去年的毕业班,我在课堂教学进行“导师式”课堂教学模式的实践,把实践的感受撰写的论文获得长沙市论文评比一等奖。今年的毕业班,我尝试“三段式目标自主学习法”(自己瞎捏的名词)。课堂主要环节包括:接触课题,展开目标-----自主学习,到达目标-----反馈内化,延伸目标。总的思路是放手让每一个学生大胆亲近数学,根据自己的能力提出对数学的看法进行积极的学习,宗旨是全面提升学生对数学的态度和学习方法,从而提高课堂的效率。

一、直接导入,展示目标。

1.出示课题:倒数的认识。

看到这个课题你能知道我们这节课的学习任务是什么?(借用三个英语单词做引路词:What? Why ? How?)。

2.是否有哪些经验可以回答一点?(调查学生已有的知识经验和生活经验)

二、研究学习,到达目标。边学边练

1.自学教材5分钟,尝试做一下书本的练习题。教师巡视。

把自己的收获,和你认为最有价值的句子写到黑板上。可以是书本上的,也可以是自己想的。写在课题下面。(鼓励学生板书,培养抽象知识的能力。)

2.概括“倒数”的意义。

下定义:乘积是1的两个数互为倒数。

尝试表达:这些算式里哪两个数互为倒数?P24的几个例子,把机会留给学困生表达。

3.怎样求一个数的倒数?

你能找出与这些数互为倒数的数吗?

4.穿插一个游戏,互说倒数,先叫一个学生上讲台与老师示范再同桌展开活动。

小结方法:谁发现了求一个数的倒数的方法?

特例:0没有倒数?

5.作业指导。求一个数的倒数的过程。

求3/5的倒数,下面是小红和小明的作业本,你赞成谁的书写?

小红:3/5=5/3

小明:3/5的倒数是5/3。

6.当堂作业:P24的。做一做。P25的第4题。做在书上。

三、拓展目标,巩固提高。

1.判断:(对的在括号里打“√”,错的打“×”)

2。开放性填空。(假定法)

四、自主小结,延伸目标。

谈谈自己的收获和学习体会。

教后反思:

1.教学流程顺利。学生的学习过程按照平时训练的自主学习方式推进,每个人根据自身基础寻求不同程度的进步和发展。每个人都在参与,都在思维。

2.体现自己的教学观和学生观。课堂是学生的课堂,备课固然要考虑教材的处理,但更重要的是要考虑学生的感受,考虑学生的学习心理。我设计的教学过程主要围绕学生学习活动推进,让学生自主学习。长期坚持,学生的自学能力能得到很好的培养。

3.五分钟的遗憾。看手表还有五分钟时间,不想铃声却响了。还有一个提高拓展的环节没有完整,给听课者和自己一个残缺感,是个遗憾。没关系,教研是个话题,能通过一节课展示自己的想法和做法,供大家批评、商讨,也是一件好事。

《倒数的认识》教学设计 篇六

教学内容:六年级上册第二单元倒数的认识。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法。

2、提高学生观察、比较、、概括的能力。

3、感悟“变通”的数学思想。

教学重点:倒数的意义与求法。

教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

教学程序:

一、激趣导入,揭示课题。

师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?

(生:上下两部分调换了位置,变成了另一个字)

师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

再出示“吴”,让学生得出“吞”。

师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识

二、引导质疑,自主探究。

1、引导质疑。

师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?

生:什么是倒数?

生:倒数是指一个数吗?

生:倒数应该怎样表述?

生:怎样求倒数?

生:倒数是不是一定是分数?

生:倒数有什么用?

生:是不是每个数都有倒数?

2、游戏比赛,理解倒数的意义。

师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

准备好了吗?开始……

师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

(生读,师有选择的板书在黑板上。)

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

师:为什么能写这么多呢?你们有什么窍门吗?

生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。

3、揭示倒数的意义

师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。

师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。

师板书:乘积是1的两个数互为倒数

你认为哪个词非常重要?你是如何理解“互为”的?生回答

(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

强调:(1)乘积必须是1。

(2)只能是两个数。

(3)倒数是表示两个数的关系,它不是一个数。

4、小组探究求一个倒数的方法

师:同学们知道了什么是倒数,你能求出一个数的倒数?

请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。100、1、0 1、2、3 0.5、3.4、0.23

小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

三、巩固练习,内化提高。

1、判断题。

2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。

师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

交流发现:

师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。)

师:是不是所有真分数的倒数都是假分数?

(出示结论:所有真分数的倒数都是假分数)

师:第二组(这组分数都是假分数,它们的倒数都是真分数。)

师:是不是说所有假分数的倒数都是真分数?(不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

师:你说的就是等于1的假分数。而第二组中的分数都是什么样的假分数?

(都是大于1的假分数。)

所以——(卡片结论:大于1的假分数的倒数都是真分数。)

师:第3组呢?(这组分数的倒数都是整数。)

这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)

师:第四组呢?(……这组都是整数,整数的倒数都是分子为1的真分数。)

师:是不是所有整数的倒数都是分数单位?

(出示:非零整数的`倒数都是分数单位)

师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?

师:你能用“我学会了--”来描述今天学到的知识吗?

生:。.。.。.。

五、学科融合

今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。