1. 主页 > 高考复习 > 数学 >

奇偶性的判断方法

利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数。《奇偶性的判断方法》是高考家长网为您整理的奇偶性的判断相关信息,欢迎查阅参考。

判断函数的奇偶性共有四种方法

1、定义法:

利用奇偶函数的定义来判断(这是最基本,最常用的方法)定义:如果对于函数y=f(x)的定义域A内的任意一个值x,都有f(-x)=-f(x)则这个函数叫做奇函数f(-x)=f(x),则这个函数叫做偶函数。

2、求和(差)法:

若f(x)-f(-x)=2f(x),则f(x)为奇函数。

若f(x)+f(-x)=2f(x),则f(x)为偶函数。

3、用求商法判断

若f(-x)/f(x)=-1,(f(x)≠0)则f(x)为奇函数。

若f(-x)/f(x)=1,(f(x)≠0)则f(x)为偶函数。

4、图像判断法:

奇函数的图像关于原点中心对称,而偶函数的图像关于Y轴轴对称。

注意:

如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0。

注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数。

以上这篇《奇偶性的判断方法》就是高考家长网小编为您分享的奇偶性的判断的相关知识,感谢您的查阅。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。