1. 主页 > 高考复习 > 数学 >

复合函数求导公式有哪些 复合函数求导法则

有很多的同学是非常的想知道,复合函数求导公式是什么,为了让您对于复合函数求导公式的了解的更为全面,下面高考家长网给大家分享了《复合函数求导公式有哪些 复合函数求导法则》,希望可以给予您一定的参考。

复合函数如何求导

规则:1、设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);

2、设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);

拓展:

1、设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y 之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为: y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。

2、定义域:若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是D= {x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

3、周期性:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为 T1*T2,任一周期可表示为k*T1*T2(k属于R+).

4、单调(增减)性的决定因素:依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增; 增+减=减;减+增=减”,可以简化为“同增异减”。

复合函数求导法则

Y=f(u),U=g(x),则y′=f(u)′*g(x)′

例1.y=Ln(x^3),Y=Ln(u),U=x^3,

y′=f(u)′*g(x)′=[1/Ln(x^3)]*(x^3)′=[1/Ln(x^3)]*(3x^2)

=(3x^2)/Ln(x^3)]

例2.y=cos(x/3),Y=cosu,u=x/3

由复合函数求导法则得y=-sin(x/3)*(1/3 )=-sin(x/3)/3

复合函数性质是什么

复合函数的性质由构成它的函数性质所决定,具备如下规律:

(1)单调性规律

如果函数u=g(x)在区间[m,n]上是单调函数,且函数y=f(u)在区间[g(m),g(n)] (或[g(n),g(m)])上也是单调函数,那么

若u=g(x),y=f(u)增减性相同,则复合函数y=f[g(x)]为增函数;若u=g(x),y= f(u)增减性不同,则y=f[g(x)]为减函数.

(2)奇偶性规律

若函数g(x),f(x),f[g(x)]的定义域都是关于原点对称的,则u=g(x),y=f(u)都是奇函数y=f[g(x)]是奇函数;u=g(x),y=f(u)都是偶函数,或者一奇一偶时,y= f[g(x)]是偶函数.

以上就是高考家长网给大家分享的《复合函数求导公式有哪些 复合函数求导法则》,希望在您阅读之后,会更好的了解复合函数求导公式相关知识。

本站内容由网友提供,版权归原作者本人所有,本网站不对网站真实性负责,如有违反您的利益,请与我们联系。